

Sample & Buy

Automotive Display 4-Channel LED Backlight Driver with I²C Interface

1 General Description

The RTQ4554-QT is a 4-channel LED driver capable of delivering 170mA for each channel with a DC-DC controller. The current-mode switching DC-DC controller supports boost or SEPIC topologies and operates in the 300kHz to 2.2MHz frequency range. The device accepts a wide 3V to 40V input voltage range and withstands direct automotive cold crank and load-dump events. The internal current sinks support a maximum of 3.5% current accuracy and mismatching for excellent brightness uniformity in each string of LEDs.

The RTQ4554-QT automatically detects and disconnects any unconnected and/or broken strings during operation from the control loop to prevent VLED from overvoltage. To provide enough headroom for current sink operation, the boost controller monitors the minimum voltage of the LEDx pins and regulates an optimized output voltage for power efficiency.

The RTQ4554-QT has a standard I^2C digital interface for functional settings. Moreover, the boost switching and PWMO frequency can be programmed by the I^2C interface. Comprehensive diagnostic information is also available through the I^2C interface. When an abnormal situation occurs, a status signal will be sent to the system.

The RTQ4554-QT is available in a 24-pin WQFN package and operates within a temperature range of -40° C to 125°C.

2 Applications

- Automotive Infotainment Displays
- Automotive Instrument Clusters
- Heads-Up Displays

3 Features

- Wide Operating Input Voltage: 5V to 40V
 - Support Cold Crank Down to 3V Supply After Start-Up
- High Output Voltage: Up to 45V
- NMOS or PMOS Input Protection Switch
- Integrated Boost and SEPIC Controller for LED
 Driver
 - Switching Frequency: 300kHz to 2.2MHz
 - Spread Spectrum for Reduced EMI
 - Automatic Output Voltage Discharged When Controller Is Disabled
- 4-Channel Current Sinks with 30mA to 170mA per Channel
- Channel Current Regulation with Accuracy ±3.5% and Matching 3.5%
- Up to 16-Bit Dimming Resolution with I²C or PWM Input
- Programmable Multi-Dimming Operation Mode
 - Up to 16-Bit PWM and Mixed Dimming Resolution
 - Up to 12-Bit DC Dimming Resolution
- Dimming Ratio 32000:1 in PWM Mode Using a 152Hz Output PWM Frequency
- Dimming Ratio 4000:1 in DC Mode
- Advanced Slope Function for Smooth Dimming
- Phase-Shift PWM Mode Reduces Audible Noise
- Adaptive Headroom Control Method to Optimize
 Output Voltage for Power Efficiency
- Protections
 - LED Open and Short Fault
 - Boost OCP, OVP, and UVP Protection
 - VIN OVP, OCP, and UVLO Fault
 - Warming and Over-Temperature Protection
 - Extensive Fault Diagnostics and Fault Indicator Signal Output
- Embedded Memory with MTP
- AEC-Q100 Grade 1 Qualified
- Ambient Temperature Range: –40°C to 125°C
- Junction Temperature Range: -40°C to 150°C

4 Simplified Application Circuit

5 Ordering Information

6 Marking Information

JH=YM DAN JH=: Product Code YMDAN: Date Code

Note 1.

Richtek products are Richtek Green Policy compliant and marked with ⁽¹⁾ indicates compatible with the current requirements of IPC/JEDEC J-STD-020.

Table of Contents

1		al Description	
2		cations	
3		res	
4	Simpl	ified Application Circuit	2
5	Order	ing Information	2
6	Marki	ng Information	2
7		onfiguration	
8	Funct	ional Pin Description	4
9		ional Block Diagram	
10		ute Maximum Ratings	
11		nmended Operating Conditions	
12	Electr	ical Characteristics	
	12.1	System Characteristics	
13		al Application Circuit	
14	Timin	g Diagram	17
	14.1	Power Sequence	
15		al Operating Characteristics	
16	Applic	cation Information	
	16.1	LED Output Current Setting	
	16.2	ISET Setting Curve	22
	16.3	LED Dimming Frequency Setting	23
	16.4	Boost Switching Frequency Setting	23
	16.5	Dimming Mode	24

	16.6	Brightness Control by I2C Interface:	24
	16.7	Brightness control by PWM pin:	26
	16.8	LED Output String Configuration	28
	16.9	LED Current Slope function	28
	16.10	Dither Function	29
	16.11	LED Headroom and ADHR Function	29
	16.12	Spread Spectrum Function	30
	16.13	Key Components Selection	30
	16.14	Thermal Considerations	
	16.15	Layout Guideline	
17	Functi	onal Register Description	40
	17.1	I ² C Command	
	17.2	MTP Read/Write Function	
	17.3	MTP Program Sequence	43
	17.4	MTP Program Application Circuit for	
		Single Chip	
18	Outlin	e Dimension	71
19		rint Information	
20	Packir	ng Information	
	20.1	Tape and Reel Data	73
	20.2	Tape and Reel Packing	
	20.3	Packing Material Anti-ESD Property	75
21	Datas	heet Revision History	76

7 Pin Configuration

(TOP VIEW)

WQFN-24SL 4x4

8 Functional Pin Description

Pin No.	Pin Name	Pin Function
1	SCL	Clock signal pin of the I ² C interface.
2	SS_ADDR	Device Address Select Pin. When SS_ADDRSEL = 0 (Low), the slave address is (0x2Ch). When SS_ADDRSEL = 1 (High), the slave address is (0x3Ch). Set Table 5.
3	SGND	Signal ground.
4	SD	Gate driver output for external power-line N-MOSFET or P-MOSFET control.
5	VSEN_N	Pin for input voltage detection for OVP protection and negative input for input current sense. If input current sensing is not used, connect this pin to the VSEN_P pin.
6	VSEN_P	Pin for input voltage detection for OVP protection and positive input for input current sensing.
7	VLDO	Regulator output for chip internal use only. A $10\mu F$ capacitor should be placed on this pin to stabilize the 5V output of the internal regulator.
8	GD	Gate driver output for external power N-MOSFET control.
9	PGND	Power ground.
10	ISNS	Controller current sense positive pin.
11	FB	Controller voltage feedback input.
12	DISCHG	Controller output voltage discharge pin.
13, 14	NC	No internal connection. (Dummy pin which can connect to any level or have the component removed.)
15	LED3	Current sink for LED3. If unused, connect to ground.
16	LED_GND	LED ground.
17	LED2	Current sink for LED2. If unused, connect to ground.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RTQ4554-QT

Pin No.	Pin Name	Pin Function
18	LED1	Current sink for LED1. If unused, connect to ground.
19	LED0	Current sink for LED0. If unused, connect to ground.
20	ISET	ILED current setting through an external resistor.
21	EN	Enable input.
22	INT	Status indicator output. This pin will be pulled low if a fault occurs.
23	PWM	PWM input for brightness control.
24	SDA	Data signal pin of the I ² C interface.
25 (Exposed Pad)	GND	The exposed pad must be soldered to a large PCB and connected to the ground for maximum power dissipation.

9 Functional Block Diagram

10 Absolute Maximum Ratings

(<u>Note 2</u>)

VSEN_P, VSEN_N, SD, DISCHG, FB, LED0 to LED3	–0.3V to 49.5V
• EN, PWM, SDA, SCL	–0.3V to 5.5V
• ISNS, VLDO, GD, INT, SS_ADDR, ISET	–0.3V to 5.5V
Package Thermal Resistance	
• Power Dissipation, $P_D @ T_A = 25^{\circ}C$	
WQFN-24SL 4x4	2.66W
Package Thermal Resistance (<u>Note 3)</u>	
WQFN-24SL 4x4, θJA	37.57°C/W
WQFN-24SL 4x4, θJC	1.02°C/W
Lead Temperature (Soldering, 10 sec.)	260°C
Junction Temperature	150°C
Storage Temperature Range	–65°C to 150°C
ESD Susceptibility (Note 4)	
Human Body Model (HBM), per AEC Q100-002 (Note 5)	±2kV
Charged Device Model (CDM), per AECQ100-011	
Corner Pins	±750V
Other Pins	±500V

- **Note 2.** Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- **Note 3.** θ_{JA} is measured under natural convection (still air) at $T_A = 25^{\circ}C$ with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the bottom of the package.
- Note 4. Devices are ESD sensitive. Handling precautions are recommended.
- Note 5. AECQ100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

11 Recommended Operating Conditions

(<u>Note 6</u>)

Ambient Temperature Range	–40°C to 125°C
Junction Temperature Range	–40°C to 150°C

Note 6. The device is not guaranteed to function outside its operating conditions.

12 Electrical Characteristics

(V_IN = 12V, T_A = T_J = -40°C to 125°C, unless otherwise specified.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Power Supply						
VIN Supply Input Voltage	VIN		5	12	40	V
VIN Supply Input Voltage After Start-Up			3	12	40	V
Undervoltage-Lockout Threshold	VUVLO_R1	VIN Rising (Register Setting 1)	3.95	4.3	4.65	V
Undervoltage-Lockout Threshold	VUVLO_F1	VIN Falling (Register Setting 1)	2.35	2.45	2.55	V
Undervoltage-Lockout Threshold	VUVLO_R2	VIN Rising (Register Setting 2)	3.95	4.3	4.65	V
Undervoltage-Lockout Threshold	VUVLO_F2	VIN Falling (Register Setting 2)	3.3	3.45	3.6	V
Undervoltage-Lockout Threshold	Vuvlo_r3	VIN Rising (Register Setting 3)	5.1	5.3	5.5	V
Undervoltage-Lockout Threshold	VUVLO_F3	VIN Falling (Register Setting 3)	4.75	4.95	5.15	V
Undervoltage-Lockout Threshold	VUVLO_R4	VIN Rising (Register Setting 4)	7.0	7.3	7.6	V
Undervoltage-Lockout Threshold	VUVLO_F4	VIN Falling (Register Setting 4)	6.65	6.95	7.25	V
Overvoltage Protection Threshold	Vovp	VIN Rising	40.8	43	45.2	V
Overvoltage Protection Threshold Hysteresis	VOVP_HYS		2.0	2.35	2.7	V
Overcurrent Protection Threshold Voltage (Level-I)	VTH_OCP1	RISENSE = $20m\Omega$ IOCP = 11A	187	220	253	mV
Shutdown Current	ISHDN	EN = L		1	5	μA
Quiescent Current	IQ	EN = H, LX no switching, PWM = 0%	6	7	8	mA
Interface Characteristic						
EN, PWM, SS_ADDR,	VIH		1.2			V
SDA, SCL Input Voltage	VIL				0.4	V
Internal Pull Low Resistor for EN	RPULL_LOW		0.8	1	1.2	MΩ
INT Pin Output Low Level	Vol_int	IINT = 3 mA		0.3	0.5	V
INT Pin Output Leakage Current	IOLK_INT				1	μΑ
Output Leakage Current for SDA	ISDA_LK	SDA Pin Voltage = 3.3V			1	μA
Boost Controller						
Switching Frequency Accuracy	fsw_acc	PWM Duty = 100%	-10		10	%
Switching Frequency	fsw		303		2200	kHz

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
		BST_Fsw = 300kHz to 500kHz	88		90	
Maximum Duty Cycle	D	BST_Fsw = 1800kHz to 2200kHz	86		88	%
Inductor Overcurrent Protection Threshold	IOCP	RSENSE = $20m\Omega$	9	10	11	А
VISNS Threshold	VISNS	RSENSE= 15 to $50m\Omega$	180	200	220	mV
Minimum On-Time	ton_min		55	80	105	ns
Overvoltage Protection Threshold (Level-I)	VOVP1	Boost OVP low threshold at the FB pin	1.41	1.43	1.45	V
Overvoltage Protection Threshold (Level-II)	Vovp2	Boost OVP high threshold at the FB pin	1.73	1.76	1.79	V
Overvoltage Protection Threshold (Level-III)	Vovp3	Boost OVP high threshold at the DIS pin	48	50	52	V
Undervoltage Protection Threshold	Vuvp	Boost UVP threshold at the FB pin	0.84	0.875	0.91	V
GD Pin Pull-Low Impedance	Rl_gd		80	100	120	kΩ
DIS Pin Discharge current	I _{DISCHG}	EN = L	29	33.5	38	mA
Feedback Reference Voltage	Vref		1.17	1.21	1.25	V
LED Current						
Logic Input Leakage Current	lilk	VLEDx = 48V at LED0~3 pins when EN=0		0.1	2.5	μA
Maximum LED Current Setting	ILED_MAX	LED 100% setting at the ISET pin	30		170	mA
LED Current Accuracy	ILED_ACC_100%	I _{LEDx} = 150mA, PWM Duty = 100%, All Dimming Mode	-3.5		3.5	%
LED Current Matching	ILED_MATCH_10 0%	I _{LEDx} = 150mA, PWM Duty = 100%, All Dimming Mode			3.5	%
ISET Pin Undervoltage Protection Threshold	VUVP_ISET	LED_CURRENT[11:0] is written to 0x3FF. Total LED current limited to 70 mA.	0.96	0.99	1.02	V
LED Sink Headroom	VHEADROOM	Settings by the Register	0.35		0.7	V
LED Sink Headroom Hysteresis	VHEADROOM_H YST	Settings by the Register	0.05		0.5	V
Saturation Voltage	VSAT	ILEDx = 170 mA, the LED current has dropped by 10% from the value measured at 1V (the LED sink headroom setting 0.7V)	0.25	0.6	0.95	V
ISET Pin Threshold Voltage	VISET		1.17	1.21	1.25	V
LED Short Detection Threshold	VSHORT_LED		2.6		6	V
LED Open Detection Threshold	VOPEN _LED		0.35		0.7	V
Power-Line FET and RIS	SENSE Electrica	I Characteristics				
Current Limit	ILIM	RISENSE = $20m\Omega$ Vsense = $220mV$	9.35	11	12.65	А

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
VSEN_P Pin Leakage Current	ILEAK_VSEN_P	VSEN_P = 40V		1	2.5	μA
VSEN_N Pin Leakage Current	ILEAK_VSEN_N	VSEN_N = 40V		1	2.5	μΑ
SD Pin Leakage Current	IILK_SD	VSD = 40V		1		μΑ
SD Pull-down current	IPD_SD	$RSD = 20 \mathrm{k}\Omega$	325		450	μA
Gate Driver and GD Cur	rent					
High-Side Switch On- Resistance	Ron_HS	Source, VGD/(GDRDSON + total resistance to gate input of SW FET) must not be higher than 2.5A. Source Current= 10mA	1	1.5	2	Ω
Low-Side Switch On- Resistance	Ron_ls	Sink, VGD/(GDRDSON + total resistance to gate input of SW FET) must not be higher than 2.5A. Sink Current= 10mA	0.1	1	1.5	Ω
VLDO Electrical Charac	teristics					
	Vldo	No LOAD	4.8	5	5.2	V
LDO Output Voltage	VLDO	ILOAD = 100mA	4.7	5	5.3	v
VLDO Source Current	Ivldo				100	mA
Dropout Voltage	Vdrop	ILOAD = 100mA			800	mV
Current Limit			120	140	160	mA
Spread Spectrum						
SS Modulation Frequency	fss	Programmable	11		30	kHz
SS Frequency Jittering Range	fss_jit	Programmable	±3.68		±7.13	%
PWM Generator						
LED PWM Output Frequency	fpwm_out		0.152		19.531	kHz
LED Output Dimming Frequency Accuracy	fdim_acc		-10		10	%

12.1 System Characteristics

The following specifications are guaranteed by design and are not performed in production testing. $(V_{IN} = 12V, T_A = T_J = -40^{\circ}C \text{ to } 125^{\circ}C, \text{ unless otherwise specified.})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Power Supply						
Quiescent Current	IQ	EN = H, LX switching, PWM = 0%		12.5		mA
I2C Interface Timing						
SCL Clock Frequency	fscl		1		400	kHz
(Repeated) Start Hold Time	thd;sta		0.6			μS
SCL Clock Low Period	tLOW		1.3			μS
SCL Clock High Period	thigh		0.6			μS

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
(Repeated) Start Setup Time	tsu;sta		0.6			μs
SDA Data Hold Time	thd;dat		0		900	ns
SDA Setup Time	tsu;dat		100			ns
Rise Time of SDA and SCL Signals	tR		20		300	ns
Fall Time of SDA and SCL Signals	tF		20		300	ns
STOP Condition Setup	tsu;sto		0.6			μs
Bus Free Time between Stop and Start	tBUF		1.3			μS
Capacitive Load for I2C Bus	Cb			400		pF
Pulse Width of Suppressed Spike	tSP			85		ns
Time out	tout			500		ms
Output Low Level for SDA	Vol_sda	External Pull High Current = 3mA		0.3	0.5	V
Boost Controller	-					
Output Voltage	Vout	Boost Mode, Vout > Vin+3	20		45	V
e alpar venage		SEPIC Mode	6		24	V
		Boost Mode, IOUT = 4 x 170 mA			5.5	
Max Conversion Ratio (Vout/Vin)	Ммах	Boost Mode, Iout = 4 x 100 mA			10	V/V
		SEPIC Mode			5	
Soft-Start Time	tss	Delay from the beginning of boost soft-start to when the LED drivers can begin operation		50		ms
Power Off Discharge Time	tDISCHG	EN = L	360	400	440	ms
		Register AUTO_BST_FREQ_SEL = 0h	273	303	333	
		Register AUTO_BST_FREQ_SEL = 1h	360	400	440	
		Register AUTO_BST_FREQ_SEL = 2h	545	606	667	
Switching Frequency	fsw	Register AUTO_BST_FREQ_SEL = 3h	720	800	880	kHz
	1300	Register AUTO_BST_FREQ_SEL = 4h	900	1000	1100	
		Register AUTO_BST_FREQ_SEL = 5h	1125	1250	1375	
		Register AUTO_BST_FREQ_SEL = 6h	1500	1667	1834	
		Register AUTO_BST_FREQ_SEL = 7h	1980	2200	2420	

LED Current ILED_MIN ILEDx = 30mA, F Setting ILED_MIN ILEDx = 30mA, F PWMO = 19.53 Register LED_S Dependence Register LED_S LED Short Detection VSHORT_LED Threshold VSHORT_LED Register LED_S Register LED_S Ah Register LED_S Register LED_S Register LED_S Ah Register LED_S Register LED_S Register LED_S Ah Register LED_S Register LED_S Sh Register LED_S Register LED_S Ah Register LED_S Register LED_S Register LED_H Register LED_H Register LED_H	$\frac{\text{Hz}}{\text{HORT}_\text{THR}} = \frac{1}{2.35}$ $\frac{1}{3.25}$ $\frac{1}{3.55}$ $\frac{1}{3.55}$ $\frac{1}{3.55}$ $\frac{1}{3.55}$ $\frac{1}{3.55}$	5 3.0	 2.85 3.25	μΑ
SettingILED_MINPWMO = 19.53Register LED_S OhRegister LED_S OhLED Short Detection ThresholdRegister LED_S 2hWSHORT_LEDRegister LED_S 3hRegister LED_S ShRegister LED_S 	$\frac{\text{Hz}}{\text{HORT}_\text{THR}} = \frac{1}{2.35}$ $\frac{1}{3.25}$ $\frac{1}{3.55}$ $\frac{1}{3.55}$ $\frac{1}{3.55}$ $\frac{1}{3.55}$ $\frac{1}{3.55}$	5 2.6 5 3.0	2.85	μΑ
LED Short Detection Negister LED_S Threshold VSHORT_LED Register LED_S Register LED_S Ah Register LED_S Register LED_S Register LED_S Register LED_H Register LED_H Register LED_H	$\frac{2.35}{300}$ $\frac{1}{300}$	5 3.0		
LED Short Detection ThresholdVSHORT_LEDIn Register LED_S 2h Register LED_S 3hVSHORT_LEDRegister LED_S 3hRegister LED_S 5hRegister LED_S 6hRegister LED_S 5hRegister LED_S 6hRegister LED_S 6hRegister LED_S 7hLED Open Detection ThresholdLED Open Detection ThresholdVOPEN_LEDRegister LED_H Register LED_H<	$\frac{2.75}{3.25}$ $\frac{3.25}{3.55}$ $\frac{3.55}{3.55}$		3.25	
LED Short Detection ThresholdVSHORT_LEDRegister LED_S 3hWSHORT_LEDRegister LED_S 5hRegister LED_S 6hRegister LED_S 6hRegister LED_S 7hLED Open Detection ThresholdRegister LED_H Register LED_H Regi	= 3.25 SHORT_THR = 3.55	5 3.4		
LED Short Detection ThresholdVSHORT_LED3hRegister LED_S 4hRegister LED_S 5hRegister LED_S 	HORT THR -		3.75	
Inreshold Register LED_S 4h Register LED_S 5h Register LED_S 6h Register LED_S 6h Register LED_S 7h Register LED_H Register LED_H 	HORT THR -	5 3.8	4.05	V
ShRegister LED_SArrowRegister LED_SRegister LED_FRegister LED_FReg	3.85	5 4.2	4.35	v
6hRegister LED_S7hRegister LED_HRegister LED_HRegist	HORT_THR = 4.3	4.8	4.9	
LED Open Detection ThresholdRegister LED_H Register LED_	4.9	5.2	5.5	
LED Open Detection Threshold VOPEN_LED Register LED_H Register LED_H Regi	SHORT_THR = 5.6	6	6.2	
LED Open Detection Threshold VOPEN_LED Register LED_H Register LE	R_THR = 0h 0.33	3 0.35	0.37	
LED Open Detection ThresholdVOPEN_LEDRegister LED_H Register LED_H Register LED_H Register LED_HRegister LED_H Register LED_HRegister LED_HPower-Line FET and RISENSE Electrical Soft-Start TimetssSettings by the I SSSoft-Start TimetssSettings by the I SSSD Pin Leakage CurrentIILK_SDVSD = 40VOver-Temperature Protection ThresholdTOTPOver-Temperature Protection HysteresisTOTP_HYSWarn-Temperature Protection ThresholdTwTP	R_THR = 1h 0.38	3 0.4	0.42	V
Threshold VOPEN_LED Register LED_H Register LED_H Register LED_H Register LED_H Register LED_H Register LED_H Register LED_H Power-Line FET and RISENSE Electrical Characteristics Soft-Start Time tss Soft-Start Time tss Soft-Start Time IILK_SD VSD = 40V OTP Over-Temperature TOTP Protection Threshold TOTP_HYS Warn-Temperature TWTP Warn-Temperature TWTP	R_THR = 2h 0.43	3 0.45	0.47	
ThresholdVOPEN_LEDRegister LED_HRegister LED_HRegister LED_HRegister LED_HRegister LED_HRegister LED_HRegister LED_HPower-Line FET and RISENSE Electrical CharacteristicsSoft-Start TimetssSoft-Start TimetssSD Pin Leakage CurrentIILK_SDVSD = 40VOVer-TemperatureTOTPProtection ThresholdTOTP_HYSWTPWarn-TemperatureWarn-TemperatureTWTPWarn-TemperatureTWTP	R_THR = 3h 0.48	3 0.5	0.52	
Mathematical Structure Power-Line FET and RISENSE Electrical Characteristical Soft-Start Time tss Settings by the I Soft-Start Time tss Settings by the I SD Pin Leakage Current IILK_SD VSD = 40V OTP TOTP Over-Temperature TOTP_HYS Protection Hysteresis TOTP_HYS Warn-Temperature TwTP Warn-Temperature TwTP	R_THR = 4h 0.53	3 0.55	0.57	
Image: Section of the s	R_THR = 5h 0.58	3 0.6	0.62	
O Colspan="2"Power-Line FET and RISENSE Electrical CharacteristicsSoft-Start TimetssSettings by theSD Pin Leakage CurrentIILK_SDVSD = 40VOTPTOTPVSD = 40VOver-Temperature Protection ThresholdTOTPOver-Temperature Protection HysteresisTOTP_HYSWTPTwTPWarn-Temperature Protection ThresholdTwTP	R_THR = 6h 0.63	3 0.65	0.67	
Soft-Start TimetssSettings by theSD Pin Leakage CurrentIILK_SDVSD = 40VOTPTOTPVSD = 40VOver-Temperature Protection ThresholdTOTPOver-Temperature Protection HysteresisTOTP_HYSWTPTwTPWarn-Temperature Protection ThresholdTwTP	R_THR = 7h 0.68	3 0.7	0.72	
SD Pin Leakage Current IILK_SD VSD = 40V OTP TOTP Over-Temperature TOTP Protection Threshold TOTP_HYS WTP Warn-Temperature Protection Threshold TwTP	i			
OTP Over-Temperature Protection Threshold Over-Temperature Protection Hysteresis TOTP_HYS WTP Warn-Temperature Protection Threshold TwTP	Register 25		50	ms
Over-Temperature TOTP Protection Threshold TOTP_HYS Over-Temperature TOTP_HYS WTP Warn-Temperature Protection Threshold TWTP		1		μA
Protection Threshold TOTP Over-Temperature TOTP_HYS Protection Hysteresis TOTP_HYS WTP				
Protection Hysteresis TOTP_HYS WTP Twrp Warn-Temperature Twrp Warn-Temperature Twrp	155	5 165	175	°C
Warn-Temperature Protection Threshold Warn-Temperature		20		°C
Protection Threshold				
Warn-Temperature		135		°C
Protection Hysteresis TwTP_HYS		10		°C
Input PWM Electrical Characteristics				
Input Frequency fin	0.1		20	kHz
Input Minimum On-Time ton_MIN		200		ns
DC DAC Resolution DAC_RES DC Mode		12		Bit
PW/M Input Resolution PW/MINLESS fPWM_IN = 100H	<u></u>	16		D:+
PWM Input Resolution PWMIN_RES fpwm_in = 20kH		10		Bit

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

RICHTEK

Parameter	Symbol	Symbol Test Conditions		Тур	Max	Unit		
PWM Generator								
LED Output Minimum On-Time	tled_on_min			200		ns		
Dither Resolution	DITHER_RES				4	Bit		
	DRES_0.152k	PWM Freq =152Hz		65536				
Dimming Decelution	DRES_1.221k	PWM Freq =1.221kHz		16384		Ctore		
Dimming Resolution	DRES_4.883k	PWM Freq = 4.883kHz		4096		Steps		
	DRES_19.531k	PWM Freq = 19.531 kHz		1024				
		fpwm_out = 152Hz		32000:1				
Dimming Ratio	Dri	fPWM_OUT = 4.8kHz with Mixed dimming		8000:1				
		fpwm_out = 4.8kHz		1000:1				
		Register AUTO_PWM_FREQ_SEL = 0h	141	152	163			
		Register AUTO_PWM_FREQ_SEL = 1h283Register AUTO_PWM_FREQ_SEL = 2h567		305	327			
				610	653			
LED Output Dimming	6	Register AUTO_PWM_FREQ_SEL = 3h	1135	1221	1307			
Frequency	fdim	Register AUTO PWM FREQ SEL = 4h		2441	2612	Hz		
		Register AUTO_PWM_FREQ_SEL = 5h	4541	4883	5225			
		Register AUTO_PWM_FREQ_SEL = 6h	9082	9766	10450			
		Register AUTO_PWM_FREQ_SEL = 7h	18163	19531	20899			

Note 7. The VIN voltage must rise to a level of 2.8V before I²C operations can write to the MTP.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation www.richtek.com

13 Typical Application Circuit

13.1 Boost Controller Mode (P-Type Isolation MOSFET)

Parameter	Description
RISENSE/RSENSE	20mΩ/2512
Rsd	20kΩ/0603
Rgd	10Ω/0603
RFB2	100kΩ/0603
RFB1	910kΩ/0603
RISET	20.8kΩ/0603
Cldo	10μF/16V/±20%/1206
CIN//CIN1/COUT1	33µF/50V/±20%/EEHZC1J330P/Electrolytic/Panasonic
CIN2/COUT	2x10µF/75V/±20%/1210/CGA6P1X7R1N106M250AC/TDK
* CIN3/*COUT2 (<u>Note 8)</u>	0.1µF/50V/±20%/0603 (Optional)
L1	22µH/Shielded
D1	100V/10A/Schottky diode
Q2	60V/50A/N-MOS
Q1	60V/52A/P-MOS

Note 8. $*C_{IN3}$ and $*C_{OUT2}$: Optional components.

13.2 Boost Controller Mode (N-Type Isolation MOSFET)

Parameter	Description
RISENSE/RSENSE	20mΩ/2512
Rsd	20kΩ/0603
Rgd	10Ω/0603
RFB2	100kΩ/0603
Rfb1	910kΩ/0603
RISET	20.8kΩ/0603
Cldo	10μF/16V/±20%/1206
CIN//CIN1/COUT1	33µF/50V/±20%/EEHZC1J330P/Electrolytic/Panasonic
CIN2/COUT	2x10µF/75V/±20%/1210/CGA6P1X7R1N106M250AC/TDK
* CIN3/*COUT2 (<u>Note 9</u>)	0.1µF/50V/±20%/0603 (Optional)
L1	22µH/Shielded
D1	100V/10A/Schottky diode
D2	100V/0.15A/General diode
Q1/Q2	60V/50A/N-MOS

Note 9. $*C_{IN3}$ and $*C_{OUT2}$: Optional components.

13.3 SEPIC Controller Mode (P-Type Isolation MOSFET)

Parameter	Description			
RISENSE/RSENSE	20mΩ/2512			
Rsd	20kΩ/0603			
Rgd	10Ω/0603			
RFB2	170kΩ/0603			
RFB1	510kΩ/0603			
RISET	20.8kΩ/0603			
Rs	2Ω/0603			
Cldo	10μF/16V/±20%/1206			
CIN//CIN1/COUT1/CS2	33µF/50V/±20%/EEHZC1J330P/Electrolytic/Panasonic			
CIN2/COUT	2x10µF/75V/±20%/1210/CGA6P1X7R1N106M250AC/TDK			
* CIN3/*COUT2 (<u>Note 10</u>)	0.1µF/50V/±20%/0603 (Optional)			
Cs1	10μF/75V/±20%/1210			
D1	100V/10A/Schottky diode			
Q2	60V/50A/N-MOS			
Q1	60V/52A/P-MOS			
L1, L2	15μH/Shielded			

Note 10. *CIN3 and *COUT2: Optional components.

13.4 SEPIC Controller Mode (N-Type Isolation MOSFET)

Parameter	Description			
RISENSE/RSENSE	20mΩ/2512			
Rsd	20kΩ/0603			
Rgd	10Ω/0603			
RFB2	170kΩ/0603			
R _{FB1}	510kΩ/0603			
RISET	20.8kΩ/0603			
Rs	2Ω/0603			
Cldo	10μF/16V/±20%/1206			
CIN//CIN1/COUT1/CS2	33µF/50V/±20%/EEHZC1J330P/Electrolytic/Panasonic			
CIN2/COUT	2x10µF/75V/±20%/1210/CGA6P1X7R1N106M250AC/TDK			
* CIN3/*COUT2 (<u>Note 11</u>)	0.1µF/50V/±20%/0603 (Optional)			
Cs1	10μF/75V/±20%/1210			
D1	100V/10A/Schottky diode			
D2	100V/0.15A/General diode			
Q1/Q2	60V/50A/N-MOS			
L1, L2	15μH/Shielded			

Note 11. *CIN3 and *COUT2: Optional components.

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

ved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

14 Timing Diagram

14.1 Power Sequence

Suggested Power Sequence:

Power On: VIN \rightarrow INT pin supply \rightarrow EN \rightarrow PWM

Power Off: PWM \rightarrow EN \rightarrow INT pin supply \rightarrow VIN

1. Shutdown Mode

When EN is pulled low, the boost (controller), power-line FET, and LED outputs are turned off, and the device tries to discharge the boost output for 50 to 400ms (Register DISCH_SEL can set to disable, 100ms, 200ms, or 400ms). After this period, the device is completely turned off.

2. Device Initialization

When the voltage at the EN pin exceeds VIH and the internal LDO starts up, the device initialization begins after the VLDO voltage surpasses the UVLO rising level. During this state, the EEPROM default and trim configurations are loaded.

3. Standby Mode

Starting from Standby mode, the device can be accessed via I^2C to change any configuration registers. Moreover, when Register SEQ_CTRL = 0, the device remains in standby mode; and when Register SEQ_CTRL = 1, the device transitions to power-line FET soft-start mode.

4. Power-Line FET Soft-Start

The power-line FET is gradually enabled during this 25ms or 50ms long state via the I²C interface setting in the register PL_TSS. The boost input and output capacitors are charged to the VIN level. VIN faults for OCP, OVP, and UVP are enabled.

5. Boost Soft-Start

The boost voltage is ramped up to the initial boost voltage level with a reduced current limit for 50ms. All boost faults are now enabled.

6. Normal Mode

The LED drivers are enabled when PWM goes high or the brightness code with I²C can be accessed. All LED faults are active.

7. Discharge Mode

When EN goes low from normal mode, the boost output voltage is discharged with a 400ms timer. This state exits when VLDO is still above the LDO UVLO threshold voltage.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. www.richtek.com

ΕN

(2V/Div)

V_{LED} (8V/Div)

LX (10V/Div)

I_{LED} (300mA/Div) LED

LX

15 Typical Operating Characteristics

SEPIC Power On

Time (100ms/Div)

V_{IN} = 12V

SEPIC Power Off

Time (100ms/Div)

Phase Shift PWM Mode

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

Advance Slope

Linear Slope

 Copyright © 2024 Richtek Technology Corporation. All rights reserved.
 RICHTEK
 is a registered trademark of Richtek Technology Corporation

 www.richtek.com
 DSQ4554-QT-00
 October
 2024

 20
 20
 20
 20

16 Application Information

(<u>Note 12</u>)

The RTQ4554-QT is designed for automotive applications, with an input voltage VIN intended to be connected to the vehicle battery. Depending on the input voltage, the device can be used in either BOOST mode or SEPIC mode and operates in the 303kHz to 2.2MHz frequency range. The integrated spread spectrum feature helps to reduce EMI. Moreover, the device operates in the -40°C to 125°C temperature range. The internal current sinks support a maximum of 3.5% current mismatching for excellent brightness uniformity in each string of LEDs. LED brightness can be controlled globally through the I²C interface or PWM input. The boost controller has adaptive output voltage control based on the headroom voltages of the LED current sinks. This feature minimizes the power consumption by adjusting the boost voltage to the lowest sufficient level in all conditions. The RTQ4554-QT supports built-in Direct PWM, Mixed, Phase shift PWM, and DC dimming. The device also embeds a high-resolution architecture to ensure good contrast performance of the display, with a dimming ratio of up to 32000:1 at 152Hz.

16.1 LED Output Current Setting

The maximum output LED current is set by an external resistor value. For the application only using the external resistor RISET to set the maximum LED current for each string, the following equation is used to calculate the current setting of all strings:

$$I_{SET} = \frac{V_{ISET}}{R_{ISET}} \times Gain$$

Where, VISET=1.21V, Gain = 2580.

The LED_CURRENT[11:0] registers can also be used to adjust strings current down from this maximum. The default value for LED_CURRENT[11:0] registers is the maximum 0xFFF(4095). The following equation is used to calculate the current setting:

 $I_{LED} = \frac{1.21}{R_{ISET}} \times 2580 \times \frac{LED_CURRENT[11:0]}{4095}$

For high accuracy of LED current, it is recommended to set the ILED current in the range from 30mA to 170mA. Therefore, the RISET value is in the range from $18.4k\Omega$ to $104k\Omega$.

16.2 ISET Setting Curve

The four LED current drivers provide up to 170mA per output and can be tied together to support higher current LEDs. The maximum output current of the LED drivers is set with the ISET resistor and can be optionally scaled by the LEDx_CURRENT[11:0] register bits with an I²C interface. For high accuracy of LED current, it is recommended to set the ILED current in the range from 30 mA to 170mA. So, the RISET value is in the range from 18.4k Ω to 104k Ω . In order to avoid incorrect resistance or ISET shorting to GND causing larger LED current, the RTQ4554-QT has an ISET current limit protected function to avoid unusual LED current. If the ISET pin resistor is lower than 11.15k Ω or shorts to GND during operation, the maximum current for each LED channel can be calculated by the following equation. The LED_CURRENT[11:0] register will be automatically modified to 1/4 of the latest programmed data. If the ISET pin voltage returns to above 1V, the LED_CURRENT[11:0] register data automatically returns to the latest programmed data.

ILED_max limit =
$$\left(\left(\frac{1.21}{\mathsf{R}_{\mathsf{ISET}}} \times 2580\right) \times \left(\frac{\mathsf{LED}_{\mathsf{current}}[11:0]}{4095}\right) \times \frac{1}{4}\right)$$

16.3 LED Dimming Frequency Setting

The LED dimming frequency is asynchronous from the input PWM frequency for phase-shift PWM mode and mixed mode. The LED dimming frequency is generated from the internal 20MHz oscillator and can be set to eight discrete frequencies from 152 Hz to 19.531 kHz. The register PWM_FREQ_SEL[8:6] can be used to control the ILED PWM Output frequency. There are two ways to set the PWM frequency:

- 1. When 0x02B0 PWM_FSET_SEL[1] = 0, the LED PWM frequency will default to 305Hz.
- 2. When 0x02B0 PWM_FSET_SEL [1] = 1, the PWM output frequency setting will be determined by the user's settings (Table 1).

Table 1					
PWM_FREQ_SEL[8:6]	LED PWM Frequency (Hz)				
0h	152				
1h	305				
2h	610				
3h	1221				
4h	2441				
5h	4883				
6h	9766				
7h	19531				

16.4 Boost Switching Frequency Setting

The BST_FREQ_SEL[5:3] can be used to control the boost switching frequency. There are two ways to set the boost switching frequency:

- 1. When 0x02B0 BST_FSET_SEL[0] = 0, the boost switching frequency will default to 400kHz.
- 2. When 0x02B0 BST_FSET_SEL [0] = 1, the boost switching frequency setting will be determined by the user's setting (Table 2).

Table 2					
BST_FSET_SEL[5:3]	Switching frequency (kHz)				
Oh	303				
1h	400				
2h	606				
3h	800				
4h	1000				
5h	1250				
6h	1667				
7h	2200				

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

16.5 Dimming Mode

The DIMMING_MODE[1:0] register bits control the performance of dimming, including Phase Shift PWM, Mixed, Direct PWM and DC modes.

16.5.1 Phase Shift PWM Mode

To reduce inrush current and eliminate audible noise during PWM dimming, the LED channels' current source is phase-shifted when the IC is in PWM mode. The shifted phase depends on the number of LED channels in use. The phase shift can be estimated with the equation:

$$\mathsf{Phase}(^\circ) = \frac{360}{\mathsf{n}}$$

where n is the number of LED channels being used.

16.5.2 Mixed Mode

Mixed mode combines PWM and DC modes for controlling the brightness. Under heavy and middle load conditions, with PWM Duty \geq 12.5% or 25%, the dimming changes the DC amplitude performance to avoid flicker and noise issues. Under light load conditions, with PWM Duty < 12.5% or 25%, the PWM dimming provides both high accuracy brightness and low color distortion. By using Mix PWM dimming, the dimming ratio will be increased by 4 or 8 times, which is determined by 0x 2B2h LED_PWM_ISW_THR[8]. And LED_PWM_ISW_THR[8] controls 12.5% or 25 % PWM performance in Mixed PWM mode.

- 1. For 25% \leq PWM Duty \leq 100%, DC dimming benefits the low power requirement and increases the power-to-brightness transformation efficiency. In addition, for PWM Duty < 25%, each current sink turn-on duty will be increased by 4 times at the translated duty cycle and the same frequency to the input PWM, with the LED on-duty current regulated at 25% of the full scale.
- 2. For 12.5% ≦ PWM Duty ≦ 100%, DC dimming benefits the low power requirement and increases the power-to-brightness transformation efficiency. In addition, for PWM Duty < 12.5%, each current sink turn-on duty will be increased by 8 times at the translated duty cycle and the same frequency to the input PWM, with the LED on-duty current regulated at 12.5% of the full scale.

16.5.3 Direct PWM Mode

Direct PWM mode is the traditional way of controlling the brightness using PWM of the outputs with the same LED current across the entire brightness range. Brightness control is achieved by varying the duty cycle proportional to the input PWM. In Direct PWM mode, the PWM dimming frequency is equal to the PWM input signal. The ON/OFF switching of the current source is synchronized to the PWM signal.

16.5.4 DC Mode

DC mode features pure analog dimming all over the brightness range at full-scale LED current. DC dimming can provide potentially low power requirements for the same WLED brightness output because of the low voltage drop across each LED when the current is low. In DC mode, brightness control is achieved by changing the LED current proportionally from the maximum value to the minimum value across the entire brightness range.

The RTQ4554-QT provides two ways of brightness control for flexible system design, one is the I^2C control interface, and the other is the PWM input signal.

• Brightness Control by I²C Control Interface:

RTQ4554-QT

1. Phase Shift PWM Mode

Brightness code	0xFFFF	0x8000	0x4CCC	0x4CCC 0x1999	
	0x8000 🝾	0x4CCC	0x1999 🝾	0x0CCC	
I ² C Write Brightness code		📗			
	Duty:100%	Duty: 50%	Duty: 30%	Duty: 10%	Duty: 5%
I _{LED0}					
I _{LED1}					
I _{LED2}					
I _{LED3}					

2. Mixed Mode

3. DC Mode

Brightness code	0xFFFF	0x8000	0x4CCC	0x1999	0x0CCC
I ² C Write Brightness code	0x8000		0x1999	×2220x0	
	Duty:100% Delay≁ 1us	Duty: 50% ^{Delay} ▲ 1us	Duty: 30% Delay 1us	Duty: 10% ^{Delay} ∕ 1us	Duty: 5%
ILED_MAX					
ILED Output	50%*ILED_MAX	200/*1			
		30%*I _{LED_MAX} L	10%*I _{LED_MAX}	5%*ILED_MAX	

- Brightness Control by PWM Input Signal:
- Phase Shift PWM Mode 1.

.

2. Mixed Mode

PWM Input	 Duty:100%	 Duty: 50%	Duty: 30%	Duty: 10%	 Duty: 5%
ILED_MAX					
ILED Output			50%*I _{LED_MAX}		*[LED_PWM_ISW_THR]
12.5%* Leo.max		DC Dimming Region		30%*I _{LED_MAX}	@12.5% Duty=10/12.5*100% =80%
12.378 L ED.max					PWM Dimming Region

3. Direct PWM mode

 PWM Input	 Duty:100%	Duty: 50%		Duty: 10%	Duty: 5%
ILED_MAX					
ILED0~3 Output					
	Duty:100%	Duty: 50%	Duty: 30%	Duty: 10%	Duty: 5%

4. DC mode

16.6 LED Output String Configuration

LED_STRING_CFG[2:0] can be controlled using the output channel number. The RTQ4554-QT is a 4-channel LED driver designed for automotive backlighting. It operates by phase shifting the LED outputs based on the number of strings connected, with a 90° phase shift for 4 strings and a 180° phase shift for 2 strings. This design helps to reduce output ripple and increase the load frequency to move potential capacitor noise above the audible band.

LED STRING CFG	LED0	LED1	LED2	LED3	Automatic	
LED_STRING_CFG	(mA)	(mA)	(mA)	(mA)	Phase Shift	
2h: 4 Channel	170	170	170	170	$360/4 = 90^{\circ}$	
3h: 3 Channel	170	170	170	Tied to GND	360/3 = 120°	
4h: 2 Channel	170	170	Tied to GND	Tied to GND	360/2 = 180°	

16.7 LED Current Slope function

The RTQ4554-QT has an optional slope function that makes the transition from one brightness value to another optically smooth. The transition time between two brightness values (A and B) is programmed with the SLOPE_SEL[2:0] bits, as shown in the following figure. The SLOPE_EN register controls whether linear or advanced sloping is used. With advanced slope enabled, the brightness changes are further smoothed to be more pleasing to the human eye.

16.8 Dither Function

The PWM duty cycle dither function increases the number of brightness dimming steps beyond this oscillator clock limitation. The dither function modulates the LED driver output duty cycle over time to create more possible average brightness levels. The DITHER_SEL[3:0] register bits control the level of dither, with options to disable it or to set it to 1, 2, 3, or 4 bits.

100Hz				50.002257	0											
	4								*							
PWMI	500/									500/	500/	500/	500/	500/	500/	500/
	50%	50%	50%	50%	50%	50%	50%	50%		50%	_50%	50%	_50%_	_50%_	50%	50%
1.22kHz	→	►	_ ← →	_ →	►	↓ ↓	_ ← →	+→	>	_┥╾┝Ĺ	_ ◄ ◄ ►	_ ◄ ◄ ►	_┥╾┾Ĺ_		_\←→L_	_+→
PWMO without dither			50 0000	50.006%	50.006%	50.006%	500/	500/	500/	50%	50%	50%	50%	50%	50%	50%
1.22kHz	50.006%	5 <u>0.006%</u>	50.006%	50.006%	50.006%		50%	50%	50%	50%			50%	50%	50%	50%
	►	►	 	< >	_ ← →	▲ ▶	<->	→	_ ← ▶	_ ← ▶	_ ◄ ◄ ►	_ ◄ ◄ ►	_ ◄ ◄ ►		_ ← ▶	
PWMO with 4 bit dither																

16.9 LED Headroom and ADHR Function

LED headroom is the voltage difference between the LED forward voltage and the LED driver output voltage. It is an important parameter that affects the performance and efficiency of an LED driver circuit. Setting different LED headroom values can provide various benefits, depending on the requirements of the application.

The figure below shows the behavior of the system during the adaptive control process. The system includes an adaptive control feature that adjusts the control parameters of the system based on measurements of the output voltage from LED0 to LED3 of the system.

During the adjustment process, if the minimum LED channel voltage of the system reaches the [LED_HYS_THR+ LED_HR_THR] setting voltage, the adaptive control stops adjusting the control parameters of the system. However, if the LED channel voltage is greater than the [LED_HYS_THR+ LED_HR_THR] setting, the control adjusts downwards to the [LED_HYS_THR+ LED_HR_THR] voltage. Similarly, if the LED channel voltage is less than the [LED_HYS_THR+ LED_HR_THR] setting, the control adjusts upwards to the [LED_HYS_THR+ LED_HR_THR] voltage.

16.10 Spread Spectrum Function

The basic principle behind spread spectrum is to reduce the effects of EMI by converting a narrowband signal into a wideband signal, which will spread energy across multiple frequencies. Conservation of energy requires the total energy to remain constant; however, by distributing this energy across multiple frequency bands, peak energy is minimized. The device embeds an MRSS spread spectrum function to satisfy CISPR25 Class5 Certification requirements. The internal spread spectrum function modulates the boost frequency by $\pm 3.68\%$ to 7.13% from the central frequency, with a 11kHz to 30kHz modulation frequency. The switching frequency variation is programmable via the UM_MRSS_RANGE register, and the modulation frequency is programmable via the UM_MRSS_FREQ register.

16.11 Key Components Selection for Boost Topology

16.11.1 Maximum Output Current

Calculating the maximum current is crucial to determine the inductor ripple current. The switch current limit in the RTQ4554-QT protects the IC and circuit from damage due to overcurrent. It clamps the peak inductor current. Therefore, the current ripple in a boost converter can be subtracted from the maximum current. Also, the maximum output current assists in selecting the appropriate inductor component. The following equation shows the calculation with the related factors of the current:

$$\Delta I_{L} = \frac{V_{IN} \times D}{f_{SW} \times L} = \frac{(V_{OUT} - V_{IN}) \times (1 - D)}{f_{SW} \times L}$$

VIN = Input Voltage

Vour = Output Voltage

D = Duty Ratio

fsw = Switch Frequency

L = Selected Inductor Value

After determining the change in the inductor current, we can calculate the maximum output current that the RTQ4554-QT can deliver.

$$I_{MAXOUT} = (I_{OCP} - \frac{\Delta I_L}{2}) \times (1 - D)$$

IOCP = Switching Current Limitation

 ΔI_L = Inductor Ripple Current

D = Duty Ratio

The output current required by the system must be less than the calculated value. It represents the maximum current that the integrated power switch in the RTQ4554-QT can withstand. If the maximum value is only slightly smaller than the required one, it can be solved by using an inductor component with higher inductance. The higher inductance reduces the ripple current and increases the maximum output current.

16.11.2 Inductor Selection

The inductor plays an important role in the switching controller. It influences steady-state operation, transient response, and stability. We must consider inductor specifications, such as inductor value, DC resistance, and saturation current when choosing the inductor component. The value of an inductor determines its ripple current. Higher inductance leads to a higher maximum current due to reduced ripple current. The lower inductance allows the use of a smaller-sized inductor. It is recommended that the ripple current is set to 20% to 40% of the output DC current.

Inductor values commonly have a ±20% tolerance with no current bias. When the inductor current approaches the saturation level, its inductance may decrease 20% to 35%. In addition, inductors with low DCR values provide more output current and higher conversion efficiency. The equation below provides an estimation for the inductor. Table 3 shows recommended inductor values for each frequency.

$$L = \frac{V_{IN} \times (V_{OUT} - V_{IN})}{\Delta I_{L} \times f_{SW} \times V_{OUT}}$$

VIN = Input Voltage Vout = Output Voltage ΔI_L = Inductor Ripple Current f_{SW} = Switch Frequency

SW Frequency (kHz)	Inductance (µH)				
300	22				
400	22				
600	15				
800	15				
1000	10				
1250	10				
1667	10				
2200	10				

Table 3 Inductance Values for Boost Switching Frequencies

The inductor must be selected with a saturated current rating that is greater than the peak current. It is recommended that the inductor's current rating be 25% higher than the peak current for optimal performance. Additionally, considering efficiency in the selection process is preferable. The calculation for the maximum current is provided by the following equation:

ı –	V _{OUT} × I _{OUT}	V _{IN} × D			
PEAK -	ŋ × V _{IN}	2 × f _{SW} × L			

 I_{OUT} = Output Current V_{OUT} = Output Voltage D = Duty Ratio f_{SW} = Switch Frequency η = Efficiency of the Controller L = Selected Inductor Value

16.11.3 Diode Selection

The Schottky diode is a good choice for boost converters due to the small forward voltage and fast switching speed. However, when selecting a Schottky diode, important parameters such as reverse voltage rating, and peak current must all be taken into consideration. A suitable Schottky diode's reverse voltage rating must be greater than the maximum output voltage; a rating that is at least 25% higher is recommended. Also, its average rating must be at least 25% higher than the average output current. To increase efficiency, the forward voltage should be as low as possible, ideally less than 0.5V.

16.11.4 Input Capacitor Selection

Low ESR ceramic capacitors are recommended for input capacitor applications. A low ESR will effectively reduce the input voltage ripple caused by the switching operation. The voltage rating of the input capacitor must be greater than the maximum input voltage to ensure the enough filtering ability.

16.11.5 Output Capacitor Selection

Output ripple voltage and boost stability play important roles in estimating the performance. This portion is formed by charging and discharging process of output capacitor. The DC-bias effect can impact on the capacitance and reduce the effective value significantly up to 80%. According to the selection, we recommend using a 33μ F electrolytic capacitor in parallel with two 10μ F ceramic capacitors to lower the ripple, increase stability, and reduce the ESR effect. The voltage rating of the output capacitor must be 50% greater than the maximum output voltage to ensure the enough filtering ability.

16.11.6 Switching MOSFET

The switching MOSFET is a crucial component of the boost converter. Its power efficiency is determined by its voltage, current rating, RDSON, power dissipation, and rising and falling time. The voltage rating of the N-type MOSFET must be 25% greater than the maximum output voltage. The current rating should be higher than the inductor current. The value of RDSON is recommended to be less than $20m\Omega$. Besides, adding the resistor between the GD pin and the gate of the MOSFET can help to reduce the peak current. Also, this gate resistor can adjust the rising and falling time to improve the CISPR25 compliance.

16.11.7 Power-Line MOSFET

The power-line MOSFET isolates the input power away from the boost converter for fear that the overcurrent event causes IC damage. Due to the power controller design, the P-type and N-type MOSFETs are used in the application circuit. To turn on the MOSFET completely, the voltage rating must be 25% greater than the maximum input voltage. The current rating should be 25% higher than the input peak current. A lower RDSON can reduce power loss and enhance efficiency. We recommend using an RDSON of less than $20m\Omega$ for optimal performance. If a P-type MOSFET is used, the minimum Gate-to-Source voltage (VGS) required to fully turn on the transistor

should be less than the minimum input voltage. A $20k\Omega$ resistor should be used between the gate and source. If an N-type MOSFET is used, the Gate-to-Source voltage should be clamped, and an IN4148 should be used between the gate and source.

16.11.8 Input Current Sense Resistor

The current sense resistor in front of the converter detects the input current to prevent overflow and protect the circuit. When the voltage across the sense resistor reaches 220mV, it triggers the VIN OCP protection procedure to shut down the circuit. The value of the sense resistor can be adjusted to the input current limit. Typically, a $20m\Omega$ resistor is used to withstand an 11A current for the specified value. Due to the high power flowing through the sense resistor, it is recommended to choose the power rating of at least 3W and a 2512 package size.

16.11.9 Feedback Resistor Divider

The boost generates the LED supply voltage for best power efficiency. The feedback function (FB pin) of the RTQ4554-QT is connected to the output voltage resistor divider. The feedback mechanism in the power supply is sensed with a resistive voltage divider. The boost output voltage and the feedback resistances, RFB1 and RFB2, can be calculated by the following equation:

Boost_max = 38.7 x
$$10^{-6}$$
 x R_{FB1} + $(\frac{R_{FB1}}{R_{FB2}} + 1)$ x 1.21

VBOOST_max = Maximum Boost Voltage

 $V_{FB} = 1.21V$

RFB1/RFB2 = 7~10

The recommended value for RFB2 is 100k Ω for boost operation.

The minimum boost voltage must be less than the minimum LED string voltage. The minimum boost voltage is calculated using the following equation:

Boost_min =
$$\left(\frac{R_{FB1}}{R_{FB2}}+1\right) \times 1.21$$

V_{FB} = 1.21V

When the boost OVP_LOW level is reached, the boost controller stops switching the boost FET, and the BSTOVPL_STATUS bit is set. The LED drivers are still active during this condition, and the boost resumes normal switching operation once the boost output level falls. The boost OVP low voltage threshold is calculated using the following equation:

Boost_OVP_Low = Boost +
$$\left(\frac{R_{FB1}}{R_{FB2}}$$
+1) x (V_{OVPL} - V_{FB})

 $V_{OVPL} = 1.423V$

The boost value also changes dynamically with the current boost voltage.

When the boost OVP_HIGH level is reached, the boost controller enters fault recovery mode, and the BSTOVPH_STATUS bit is set. The boost OVP high-voltage threshold is calculated using the following equation:

Boost_OVPH = Boost +
$$\left(\frac{R_{FB1}}{R_{FB2}}+1\right) \times \left(V_{OVPH} - V_{FB}\right)$$

 $V_{OVPH} = 1.76V$

The boost value also changes dynamically with the current boost voltage.

When the boost UVP level is reached, the boost controller starts a 100-ms OCP counter. The RTQ4554-QT device enters the fault recovery mode and sets the BSTOCP_STATUS bit if the boost voltage does not rise above the UVP threshold before the timer expires. The boost UVP voltage when adaptive voltage control is at the maximum output voltage is calculated using the following equation:

Boost_UVP = Boost -
$$\left(\frac{R_{FB1}}{R_{FB2}}+1\right) \times \left(V_{FB} - V_{UVP}\right)$$

 $V_{UVP} = 0.886V$

 $I_{SEL} = 38.7 \mu A$

The boost value also changes dynamically with the current boost voltage.

16.11.10 LED Output Current Setting Resistor

The maximum output LED current is set by an external resistor value. The 0x1C2h LED_CURRENT[11:0] registers can also be used to individually adjust each string's current down from this maximum. The default value for all the LED_CURRENT[11:0] registers is the maximum (4095). The following equation is used to calculate the current setting of an individual string:

ILED =
$$(\frac{1.21}{R_{ISET}} \times 2580) \times (\frac{\text{LED}_{current[11:0]}}{4095})$$

16.12 Key Components Selection for SEPIC Topology:

16.12.1 Inductor Selection

The inductance values for both inductors are shown in <u>Table</u> 4 for each frequency. The inductance should be 20% to 35% higher than the peak current. The ripple current is estimated to be 20% to 40% of the maximum output DC current. The following equation calculates the inductor peak current.

$$I_{\text{PEAK}(L1)} = I_{\text{OUT}} \times \frac{(V_{\text{OUT}} + V_{\text{D}})}{V_{\text{IN}}} \times (1 + \frac{40\%}{2})$$

V_{IN} = Input Voltage

V_{OUT} = Output Voltage

V_D = Diode Forward Voltage

IPEAK(L1) = Peak Current for Inductor 1

IOUT = Output Current

Table 4. Inductance	Values for Sep	ic Switching Fre	auencies
	values for ocp	io o mitorining i it	queneres

SW Frequency (kHz)	Inductance (μH)
300	15

 Copyright © 2024 Richtek Technology Corporation. All rights reserved.
 RICHTEK is a registered trademark of Richtek Technology Corporation

 www.richtek.com
 DSQ4554-QT-00
 October 2024

400	15
600	10
800	10
1000	6.8
1250	6.8
1667	4.7
2200	4.7

$$I_{\text{PEAK}(\text{L2})} = I_{\text{OUT}} \times (1 + \frac{40\%}{2})$$

IPEAK(L2) = Peak Current for Inductor 2

IOUT = Output Current

$$\Delta I_{L} = I_{IN} \times 40\% = I_{OUT} \times \frac{V_{OUT}}{V_{IN}} \times 40\%$$

V_{IN} = Input Voltage

Vour = Output Voltage

I_{IN} = Input Current

I_{OUT} = Output Current

 ΔI_L = Inductor Ripple Current

16.12.2 Coupled Capacitor Selection

The coupled capacitor is used to protect against a shorted load between the input and the output. The RMS current, calculated using the following equation, affects the coupled capacitor significantly. The voltage rating of the coupled capacitor must be greater than the input voltage. It is recommended to use a 10μ F ceramic capacitor in series with a 2Ω resistor, in parallel with a 33μ F electrolytic capacitor.

$$I_{Cs_{RMS}} = I_{OUT} \times \sqrt{\frac{(V_{OUT} + V_{D})}{V_{IN}}}$$

 $\label{eq:VIN} \begin{array}{l} \mathsf{VIN} = \mathsf{Input}\;\mathsf{Voltage}\\ \mathsf{V}_{\mathsf{OUT}} = \mathsf{Output}\;\mathsf{Voltage}\\ \mathsf{V}_{\mathsf{D}} = \mathsf{Diode}\;\mathsf{Forward}\;\mathsf{Voltage}\\ \mathsf{I}_{\mathsf{Cs}_\mathsf{RMS}} = \mathsf{RMS}\;\mathsf{Current}\;\mathsf{of}\;\mathsf{Cs}\;\mathsf{Capacitor}\\ \mathsf{I}_{\mathsf{OUT}} = \mathsf{Output}\;\mathsf{Current} \end{array}$

16.12.3 Feedback Resistor Divider

The SEPIC generates the LED supply voltage for best power efficiency. The feedback function (FB pin) of the RTQ4554-QT connects to its output voltage resistor divider. The feedback in the power supply is sensed through a resistive voltage divider. The boost output voltage and the feedback resistances, RFB1 and RFB2, can be calculated using the following equation:

SEPIC_max = 38.7 x
$$10^{-6}$$
 x R_{FB1} + $(\frac{R_{FB1}}{R_{FB2}}$ + 1) x 1.21

V_{SEPIC_max} = Maximum SEPIC Voltage

 $V_{FB} = 1.21V$

RFB1/RFB2 = 3~6

The recommended value of RFB2 is 170 k Ω for SEPIC operation.

The minimum SEPIC voltage must be lower than the minimum LED string voltage. The minimum SEPIC voltage is calculated using the following equation:

SEPIC_min =
$$\left(\frac{R_{FB1}}{R_{FB2}} + 1\right) \times 1.21$$

 $V_{FB} = 1.21V$

When the SEPIC OVP_LOW level is reached, the SEPIC controller stops switching the boost FET, and the BSTOVPL_STATUS bit is set. The LED drivers are still active during this condition, and the SEPIC resumes normal switching operation once the SEPIC output level falls. The boost OVP low voltage threshold is calculated using the following equation:

SEPIC_OVP_Low = SEPIC+
$$\left(\frac{R_{FB1}}{R_{FB2}}+1\right)x (V_{OVPL} - V_{FB})$$

 $V_{OVPL} = 1.423V$

The SEPIC also dynamically adjusts to the current SEPIC voltage.

When the boost OVP_HIGH level is reached, the SEPIC controller enters fault recovery mode, and the BSTOVPH_STATUS bit is set. The boost OVP high-voltage threshold is calculated using the following equation:

SEPIC_OVPH = SEPIC+
$$(\frac{R_{FB1}}{R_{FB2}}+1) \times (V_{OVPH} - V_{FB})$$

 $V_{OVPH} = 1.76V$

The SEPIC also dynamically adjusts to the current SEPIC voltage.

When the boost UVP level is reached, the SEPIC controller starts a 100-ms OCP counter. The RTQ4554-QT device enters the fault recovery mode and sets the BSTOCP_STATUS bit if the SEPIC voltage does not rise above the UVP threshold before the timer expires. The boost UVP voltage, when adaptive voltage control is at the maximum output voltage, is calculated using the following equation:

SEPIC_UVP = SEPIC -
$$\left(\frac{R_{FB1}}{R_{FB2}} + 1\right) \times \left(V_{FB} - V_{UVP}\right)$$

VUVP = 0.886V

The SEPIC also dynamically adjusts to the current SEPIC voltage.
16.13 Thermal Considerations

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula:

$\mathsf{P}\mathsf{D}(\mathsf{M}\mathsf{A}\mathsf{X}) = \left(\mathsf{T}\mathsf{J}(\mathsf{M}\mathsf{A}\mathsf{X}) - \mathsf{T}\mathsf{A}\right) / \,\theta\mathsf{J}\mathsf{A}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-24SL 4x4 package, the thermal resistance, θ_{JA} , is 37.57°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at TA = 25°C can be calculated as follows:

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (37.57^{\circ}C/W) = 2.66W$ for a WQFN-24SL 4x4 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curve in <u>Figure 1</u> allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 1. Derating Curve of Maximum Power Dissipation

16.14 Layout Guideline

PCB layout is very important to design power switching circuits. The following layout guidelines should be strictly followed for the best performance of the RTQ4554-QT.

Boost Topology:

2024

RTQ4554-QT

Topology:

Note 12. The information provided in this section is for reference only. The customer is solely responsible for the designing, validating, and testing your product incorporating Richtek's product and ensure such product meets applicable standards and any safety, security, or other requirements.

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

17 Functional Register Description

17.1 I²C Command

The RTQ4554-QT supports the I²C interface to access and change the configuration. The 7-bit base slave address is 0x2C or 0x3C. The address can be configured through the resistor settings of the SS ADDR pin. The IC uses a 10-bit register address space. The 10-bit register address space is accessed as three separate 8-bit address spaces. Three different slave addresses are used to access each of the three 8-bit address register spaces.

SS_ADDR PIN	7-Bit Base Address	7-Bit Slave Address	Accessible 10-Bit Registers
		0x2C	0x000 to 0x0FF
GND	0x2C	0x2D	0x100 to 0x1FF
		0x2E	0x200 to 0x2FF
		0x3C	0x000 to 0x0FF
VLDO	0x3C	0x3D	0x100 to 0x1FF
		0x3E	0x200 to 0x2FF

Table 5. I ² C Address F	Registers Selection
-------------------------------------	---------------------

The RTQ4554-QT supports the I²C interface to access and change the configuration. The 7-bit base slave address is 0x2C or 0x3C. The address can be configured through the resistor settings of the SS_ADDR pin. The IC uses a 10-bit register address space. The 10-bit register address space is accessed as three separate 8-bit address spaces. Three different slave addresses are used to access each of the three 8-bit address register spaces.

RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation www.richtek.com DSQ4554-QT-00 October

Read I²C transactions are made up of five bytes. The first byte includes the 7-bit slave address and the Write bit. The 7-bit slave address selects the IC slave address and one of three 8-bit register address sections. The second byte includes 8 LSB bits of the 10-bit register address. The third byte includes the 7-bit slave address and the Read bit. The last two bytes are the 16-bit register value returned from the slave.

17.2 MTP Read/Write Function

Writes and reads can be made directly to the DAC register to control and monitor the position without any nonvolatile memory changes. The nonvolatile memory stores the power-on value. When powered on, the contents of the memory are transferred to the DAC register. Then, set the write data bit once all desired data are addressed after power-on. To write a new value to the memory, set a new power-on position and load the same value into the DAC register. When writing to address 0xFEh and the data register 8000h, the I²C interface will write all DAC register data into EEPROM.

			Table	9 6	
Address	Bit	Name	Default Value	Description	R/W
FEh	8	MTP Read	Oh	MTP Read 0h: I ² C read data from DAC 1h: I ² C read data from MTP	R/W
FEh	15	MTP Programming	0h	MTP Programming 0h: Normal operation 1h: Start MTP programming sequence	R/W

Read from MTP

Write to MTP

Write MTP Flowchart

17.3 MTP Program Sequence

Write:

T1 = 30ms, T2 = 75ms, T3 = 500ms, T4 = 100ms, T5= 120ms

Read

T1 = 30ms, T2 = 75ms, T3 = 10ms, T4 = 100ms, T5= $80\mu s$

 $f_{SCL} = 400 \text{kHz}$

17.4 MTP Program Application Circuit for Single Chip

RICHTEK

Channel	Fault Name	Threshold	Condition	Action	Trigger Fault		Trigger
				The device goes to standby	State	Recovery	INT pin
	VIN UVLO	2.8V/3.8V/5.3V/7.3V	Vin fall voltage	and then attempts to restart once the input voltage rises above threshold.	V	х	V
Vin	VIN OVP	43V	VIN voltage rises above 43V.	The device goes to standby and waits until input voltage falls below threshold before restarting.	V	х	V
	VIN OCP	0.22V	Voltage across RISENSE exceeds 220mV.	The device goes to Fault Recovery and then attempts to restart 100 ms after fault occurs.	V	V	V
	Boost OVP High	1.76V or DIS pin≧ 49.5V	The FB pin voltage rises above the VFB_OVPH level, or the DISCHARGE pin voltage (Vout) rises above VBST_OVPH.	The device goes to Fault Recovery and waits until output voltage falls below threshold before restarting.	V	V	V
	Boost OVP Low	1.423V	The FB pin voltage rises above the VFB_OVPL level.	Boost stops switching until boost voltage level falls. The device remains in normal mode with LED drivers operational.	x	х	x
Boost	Boost OCP	cycle by cycle current limit drop below VFB UVP:0.886V for 110ms.	The FB pin voltage falls below the VUVP level.	1. The boost cycle-by-cycle current limit is to protect the DC/DC components (inductor, Schottky diode, and switching MOSFET) in normal scenario, avoiding current running over their maximum limit. The normal scenario means when loading has sharp change or input voltage has sharp change. It will not trigger any device fault. However, if OCP continues to occur and then VOUT drops to trigger the UVP level, the device goes to fault recovery and then attempts to start 100ms after fault occurs. 2. The Boost OCP fault recovery state is entered, and a fault interrupt is generated.	V	V	v

Table 7. Protection Table

RTQ4554-QT

Channel	Fault Name	Threshold	Condition	Action	Trigger Fault State	Enter Fault Recovery	Trigger INT pin
	Open LED String	LED_DRV_HEADRO OM ≤0.35V~0.7V	The headroom voltage on one or more channels is below minimum level for LED filter time or LED global filter time when boost has adapted to maximum level.	The faulted LED string is disabled and removed from the adaptive boost control loop. The string is re-enabled in the next power cycle.	V	x	V
LED	LED Internal Short	2.6~6V	The headroom voltage on one or more channels is above the SHORTED_LED_THRESHOL D for > cycle time while the headroom of at least one channel is still inside the normal headroom operation window.	The faulted LED string is disabled and removed from the adaptive boost control loop. String is re-enabled next power cycle.	V	x	V
VLDO	LDO_UVP	LDO_VOUT<3.5V	LDO_VOUT<3.5V	The device goes to Fault Recovery and then attempts to restart 100 ms after fault occurs.	V	V	V
OTP	Over- Temperature Protection	165°C	Junction temperature rises above Over-Temperature Protection threshold. (Hysteresis = 20°C)	The device goes to standby and then attempts to restart once the die temperature falls below the threshold.	V	х	V
I ² C	I ² C Timeout	STOP Signal for 500ms	The device receives the I ² C command without a STOP signal for 500ms.	 Device functions normally and waits for the next I2C command. If the chip receives an I2C command without a STOP signal for 500 ms, the I2C communication block auto resets and waits for the next command. 	V	x	V
	CRC Error	CRC Error	The factory default configuration for registers, options, and trim bits are not correctly loaded from memory.	1.MTP CRC: If the MTP load down fails, the IC waits for a clear bit or restart. 2.DAC CRC: If the chip receives an I ² C command error, the I ² C communication block auto resets and waits for the next command.	V	x	х
Setting Miss	ISET Resistor Fault		The ISET pin voltage is pulled below 0.99V due to the ISET pin resistor shorted to GND. If the ISET pin voltage returns to above 1.1 V, the LED_CURRENT[11:0] register data automatically returns to the latest programmed data.	The LED_CURRENT[11:0] is written to 0x3FF, and the total LED current is limited to 70 mA.	V	x	V

The following table summarizes the registers and their default values.

					1		Т	able	8. Regist	er Ma	р				1	1			
Slave Address	Data Address	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Default	Type
Slave	Data			<u>u</u>		þ	D											Value	
	0x20h					Reserved						Reserved					BRI_MODE	40000	R/W
	0x28h								DP_BRT									H F F F h	RM
	0x40h		DITHER_SEL				-	Keserved			SLOPE_SEL		SLOPE_EN	C	Keserved		UIMING_MUDE	00B0h	R/W
	0x42h	PWM_MIN_LIM_EN								Reserved								40000	R/W
0x2Ch/3Ch	0x4Eh		Reserved		VINOCP_INI_EN	142 214 220			BIST_INT_EN		Reserved							280Ah	R/W
	0x50h		GLOBAL_INT_EN		BSIOVPH_IN1_EN				I2C_TIMEOUT_INT_EN		Reserved		BS IOUP_INI_EN	C	Keserved		I SU_IN I_EN	AA22h	RW
	0x52h					Reserved					LED_INT_EN				Keserved			0080h	R/W
	0x54h	BSTOVPH_STAT	BSTOVPH_CLR	ISET_STAT	ISET_CLR	LD0_UV_STAT	LDO_UV_CLR	I2C_TIMEOUT_STAT	I2C_TIMEOUT_CLR	BSTOVPL_STAT	BSTOVPL_CLR	BSTOCP_STAT	BSTOCP_CLR	BIST_STAT	BIST_CLR	TSD_STAT	TSD_CLR	40000	RW

	0x56h	Reserved	Reserved	LED3_FAULT	LED2_FAULT	LED1_FAULT	LED0_FAULT	OPEN_LED_STAT	INTERNAL SHORT_LED_STAT	LED_STAT	LED_CLR	Reserved	Reserved	MTP_CRC_STAT	MTP_CRC_CLR	DAC_CRC_STAT	DAC_CRC_CLR	40000	R/W
	0x58h	Reserved	Reserved	VINOCP_STAT	VINOCP_CLR	Reserved	Reserved	INT_PIN_STAT	INT_PIN_CLR	Reserved	Reserved	Reserved	Reserved	VINOVP_STAT	VINOVP_CLR	VINUVP_STAT	VINUVP_CLR	40000	R/W
	0xE8h		Reserved									40000	۲						
	0xECh								Reserved									40000	R/W
	0xEEh								Reserved									40000	R/W
	0x13Ch								Reserved									40000	R/W
	0x148h								Reserved									40000	R/W
	0x154h								Reserved									0000H	R/W
	0x160h								Reserved									40000	R/W
0x2Dh/3Dh	0x16Ch								Reserved									40000	R/W
0X	0x178h								Reserved									40000	R/W
	0x1C2h	LED0_SHORT_DIS		Reserved							LED_Current							OFFFh	R/W
	0x1C4h	LED1_SHORT_DIS								Reserved								40000	R/W

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

RICHTEK

	0x1C6h	LED2_SHORT_DIS			Reserved			40000	RW
	0x1C8h	LED3_SHORT_DIS			Reserved			40000	R/W
	0x1CAh				Reserved			40000	R.W
	0x1CCh				Reserved			40000	R/W
	0x288h				Reserved			40000	R/W
	0x28Ah		Reserved	LED_SHORT_THR		Reserved		0800h	R/W
ų	0x2A4h			Reserved			FSM_LIVE_STAT	40000	٣
0x2Eh/3Eh	0x2A6h				PWM_INPUT_STAT			40000	Ж
	0x2A8h				LED_PWM_STAT			40000	٣
	0x2AAh		Reserved			ILED_STAT		40000	٣

	0x2ACh			Reserved							BST_STAT					40000	R
	0x2AEh				Reserved					PWM_FREQ_SEL		BST_FREQ_SEL		LED_STRING_CFG		000Ah	R/W
	0x2B0h	BYP_BIST	BYP_MTP_CRC				BSI_GAIE_DRV	PL_TSS	WTP_EN		ILED_RISE_SR	ILED_FALL_SR	ILED_BLK	PWM_FSET_SEL	BST_FSET_SEL	CC03h	R/W
	0x2B2h		LED_HR_THR			LED_HYS_THR		SEQ_CTRL	LED_PWM_ISW_THR		MRSS_SEL	MRSS_FREQ	MRSS_RANGE	MOS_SEL	RANDOM_SEL	A2ACh	R/W
	0x2B4h	SYNC_SEL	SYNC_EN_SS	DAC_CRC_EN		DISCH_SEL		LED_SHORT_FLT_CNT	Reserved			LED_FLTR_TIME_RISE			Keserved	DE2Ch	R/W
	0x2B6h					BRT_LED_SHORT_DIS				LED_SHORT_LOW_BRT_DIS	Reserved		LED_GLOBAL_FLTR_TIME			0304h	R/W
	0x2B8h					Reserved					Reserved			KEAU_DEVICE_INF		000Ah	R
0x2Ch/3Ch	OxFEh	MTP Programming				Reserved			MTP Read			Reserved				40000	R/W

				Table 9								
ddress: 0x20)											
Bit	15	14	13	12	11	10	9	8				
Field				R	eserved							
Default					00							
Туре					R/W							
Bit	7	6	5	4	3	2	1	0				
Field				Reserved			BRT_	MODE				
Default				0				0				
Туре				R/W			R	/W				
Bit		Name				Description						
15:2		Reserve	ed		These	bits are rese	rved.					
1:0		BRT_MO	Reserved These bits are reserved. BRT_MODE 0h = Brightness controlled by PWM Input 1h = Reserved 2h = Brightness controlled by DISPLAY_BRT Register 3h = Reserved 3h = Reserved									

The BRT_MODE[1:0] selects global brightness control for all LED strings through the PWM input duty cycle on the PWM pin or register control by I²C. An internal 20-MHz clock is used for generating PWM outputs.

RTQ4554-QT

Table 10

Address: 0x28	Address: 0x28							
Bit	15	14	13	12	11	10	9	8
Field				D	P_BRT			
Default					FF			
Туре		R/W						
Bit	7	6	5	4	3	2	1	0
Field				D	P_BRT			
Default					FF			
Туре		R/W						
Bit		Name Description						
15:0		DP_BRT Display Brightness Register						

The BRT_MODE register setting is used to select whether the brightness is controlled by the DISP_BRT register or the PWM input pin. The DP BRT register controls 16 bits to adjust the ILED current.

				Table 11				
Address: 0	x40						-	
Bit	15	14	13	12	11	10	9	8
Field		DITHER_SEL				Reserved		
Default	0	0	0	0	0	0	0	0
Туре		R/W				R/W	•	
Bit	7	6	5	4	3	2	1	0
Field		SLOPE_SEL		SLOPE_EN	Res	erved	DIMMIN	G_MODE
Default	1	0	1	1	0	0	0	0
Туре		R/W		R/W	R	/W	R/	W
Bit		Name				Descriptior	<u>י</u>	
15:13	DITHER_SEL			0h = Dither D $1h = 1-bit Dit$ $2h = 2-bit Dit$ $3h = 3-bit Dit$ $4h = 4-bit Dit$ $5h = Unused$ $6h = Unused$ $7h = Unused$	her her her her			
12:8		Reserved		These bits ar	e reserved.			
7:5	SLOPE_SEL			$\begin{array}{c} 0h = 0ms \\ 1h = 1ms \\ 2h = 64ms \\ 3h = 128ms \\ 4h = 256ms \\ 5h = 512ms \\ 6h = 768ms \\ 7h = 1024ms \end{array}$				
4	SLOPE_EN		0h = Linear S 1h = Advance					
3:2		Reserved		These bits ar	e reserved.			
1:0	DIMMING_MODE			LED Output I Oh = PWM M 1h = Mixed M 2h = Direct P 3h = 12-bit C	ode lode WM Mode			

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation

RICHTEK

The PWM duty cycle dither is a function to increase the number of brightness dimming steps beyond this oscillator clock limitation. The dither function modulates the LED driver output duty to create more average brightness levels. The DITHER_SEL[3:0] register bits control the level of dither, which can be disabled or set to 1, 2, 3, or 4 bits. An optional slope function makes the transition from one brightness value to another optically smooth. The transition time between two brightness values (A and B) is programmed with the SLOPE_SEL[2:0] bits. The SLOPE_EN register controls linear or advanced sloping. With advanced sloping enabled, the brightness changes are further smoothed to be more pleasing to the human eye.

The DIMMING_MODE[1:0] register bits control the performance of dimming, including PWM, Mixed, Direct PWM, and 12 bit Constant Current mode.

Table 12

Address:	0x42								
Bit	15	14	13	12	11	10	9	8	
Field	PWM_MIN_LIM_EN			Re	served				
Default	0	0	0	0	0	0	0	0	
Туре				R/W					
Bit	7	6	5	4	3	2	1	0	
Field			R	leserved					
Default		00							
Туре				R/W					
Bit	Na	me		Description					
15	PWM_MI	lower minir When enat		ess. ess levels t	hat map	to less			
14:0	RESE	RVED		These bits	are reserve	d.			

The dither block also has an additional mode at low brightness levels when the LED PWM duty cycle is less than the minimum pulse width. The result is the LED PWM frequency is reduced as more minimum pulses are skipped or dithered out. This function can be enabled using the I²C interface by programming the PWM_MIN_LIM_EN bit to 1. The result is that the LED PWM frequency is reduced as more minimum pulses are skipped or dithered out.

				Table 13				
Address: ()x4E							
Bit	15	14	13	12	11	10	9	8
Field	BSTSYNC	_INT_EN	VINOCP	_INT_EN	ISET_I	NT_EN	BIST_II	NT_EN
Default	0	0	1	0	1	0	0	0
Туре		R/W	•			R/W	•	•
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	MTP CRO		VINOVP	_INT_EN	VINUVP	INT_EN
Default	0	0	0	0	1	0	1	0
Туре		R/W		R/W	R	/W	R/	W
Bit		Name				Description	1	
15:14	15:14 BSTSYNC_INT_EN			Read: 0h = Interru	•	ly disabled		
13:12	VINOCP_INT_EN		Read: 0h = Interru	•	ly disabled			
11:10	ISET_INT_EN				ipt is current ipt is current e Interrupt			
9:8	BIST_INT_EN			BIST Interr Read: 0h = Interru	upt Enable pt is current pt is current e Interrupt			
7:6		Reserved			are reserved	l.		
5:4	MTP CRC_INT_EN			Read: 0h = Interru		ly disabled		

53

www.richtek.com

3:2	VINOVP_INT_EN	VIN Overvoltage Interrupt Enable Read: 0h = Interrupt is currently disabled 2h = Interrupt is currently enabled Write: 1h = Disable Interrupt 3h = Enable Interrupt
1:0	VINUVP_INT_EN	VIN Undervoltage Interrupt Enable Read: Oh = Interrupt is currently disabled 2h = Interrupt is currently enabled Write: 1h = Disable Interrupt 3h = Enable Interrupt

INTERRUPT_ENABLE_1 is shown in the above figure.

Table 14

Address: 0)x50							
Bit	15	14	13	12	11	10	9	8
Field	GLOBAL	_INT_EN	BSTOVP	- H_INT_EN	LDO_UV	_INT_EN	I2C_TIMEO	UT_INT_EN
Default	1	0	1	0	1	0	1	0
Туре		R/W				R/W		
Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	BSTOCP	_INT_EN	Rese	erved	TSD_I	NT_EN
Default	0	0	1	0	0	0	1	0
Туре		R/W		R/W	R/	Ŵ	R	/W
Bit		Name				Descriptio	n	
15:14	GLOBAL_INT_EN		Global Interrupt Enable Read: 0h = Interrupt is currently disabled 2h = Interrupt is currently enabled Write: 1h = Disable Interrupt 3h = Enable Interrupt					
13:12	BSTOVPH_INT_EN			Read: 0h = Interru		ly disabled		
11:10	LDO_UV_INT_EN			LDO UV Int Read: 0h = Interru	errupt Enab opt is current opt is current e Interrupt	ly disabled		

Copyright © 2024 Richtek Technology Corporation. All rights reserved.

9:8	I2C_TIMEOUT_INT_EN	I2C TIMEOUT Interrupt Enable Read: 0h = Interrupt is currently disabled 2h = Interrupt is currently enabled Write: 1h = Disable Interrupt 3h = Enable Interrupt
7:6	RESERVED	These bits are reserved.
5:4	BSTOCP_INT_EN	Boost Overcurrent Interrupt Enable Read: Oh = Interrupt is currently disabled 2h = Interrupt is currently enabled Write: 1h = Disable Interrupt 3h = Enable Interrupt
3:2	RESERVED	These bits are reserved.
1:0	TSD_INT_EN	Thermal Shutdown Interrupt Enable Read: Oh = Interrupt is currently disabled 2h = Interrupt is currently enabled Write: 1h = Disable Interrupt 3h = Enable Interrupt

INTERRUPT_ENABLE_2 is shown in the above figure.

|--|

Address: 0	x52								
Bit	15	14	13	12	11	10	9	8	
Field		•		Res	erved			•	
Default				(00				
Туре				R	/W				
Bit	7	6	5	4	3	2	1	0	
Field	LED_I	NT_EN			Rese	erved		•	
Default	1	0	0	0	0	0	0	0	
Туре	R	W		R/W					
Bit		Name		Description					
15:8		Reserved		These bits are reserved.					
7:6	LED_INT_EN			interrupt er Read: 0h = Interro 2h = Interro Write:	upt is current upt is current le Interrupt	tly disabled			
5:0		Reserved			are reserved	d.			

INTERRUPT_ENABLE_3 is shown in the above figure.

	Table 16								
	ress: 0x54								
Bit	15	14	13	12	11	10	9	8	
Field	BSTOVPH	BSTOVPH	ISET_STAT	ISET_CLR	LDO_UV_	LDO_UV	I2C_TIMEO	I2C_TIME	
Default	_STAT0	_CLR 0	0	0	_STAT0	_CLR 0	UT_STAT 0	OUT_CLR 0	
Туре	0	R/W	0	0	0	R/W	0	0	
Bit	7	6	5	4	3	2	1	0	
ы	BSTOVPL	BSTOVPL					1	U	
Field	_STAT	_CLR	BSTOCP_S TAT	BSTOCP_ CLR	BIST_STA T	R	TSD_STAT	TSD_CLR	
Default	0	0	0	0	0	0	0	0	
Туре		R/W		R/W	R/\	N	R/	N	
Bit		Name				Descriptio	n		
15	В	STOVPH_ST	AT	DISCHARG	E pin voltage bin - Boost O	e (Vout) rise	VFB_OVPH les above VBS eshold 50V ty	T_OVPH.	
14	E	BSTOVPH_C	LR	Write '1' to clear the		oit and Clea	r bit at the sar		
13	ISET_STAT			interrupt register status and the interrupt pin status. ISET_STAT The ISET pin voltage is pulled down to below 1V due to the ISET pin resistor being shorted to GND 0h = No Fault 1h = Fault					
12	ISET_CLR			clear the	both Status b		r bit at the sar errupt pin statu		
11	L	.DO_UVST	AT	LDO Voltag 0h = No Fai 1h = Fault	e <3.5V				
10		LDO_UV_CL	R	clear the	both Status b		r bit at the sar		
9	I2C	I2C_TIMEOUT_STAT					errupt pin statu nd without a S		
8	I2C_TIMEOUT_CLR			Write '1' to clear the		oit and Clea	r bit at the sar errupt pin statu		
7	BSTOVPL_STAT			Boost OVP 0h = No Fai 1h = Fault	Low Status				
6	BSTOVPL_CLR			Write '1' to clear the		oit and Clea	r bit at the sar		
5	E	BSTOCP_ST	۹T				/UVP level of		

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation www.richtek.com

		0h = No Fault
		1h = Fault
		Boost Overcurrent Fault Clear
4	BSTOCP_CLR	Write '1' to both Status bit and Clear bit at the same time to
4	DOTOCF_CER	clear the
		interrupt register status and the interrupt pin status.
		BIST Status
3	BIST_STAT	0h = No Fault
		1h = Fault
		BIST Fault Clear
2	BIST_CLR	Write '1' to both Status bit and Clear bit at the same time to
2	BIST_CER	clear the
		interrupt register status and the interrupt pin status.
		Thermal Shutdown Status
1	TSD_STAT	0h = No Fault
		1h = Fault
		Thermal Shutdown Fault Clear
0	TSD_CLR	Write '1' to both Status bit and Clear bit at the same time to
0	13D_CLR	clear the
		interrupt register status and the interrupt pin status.

INTERRUPT_STATUS_1 is shown in the above figure.

Address:	0x56									
Bit	15	14	13	12	11	10	9	8		
Field	Res	served	LED3_F AULT	LED2_F AULT	LED1_FA ULT	LED0_F AULT	OPEN_LE D_STAT	INTERNAL SHORT_LED_STAT		
Default	0	0	0	0	0	0	0	0		
Туре		R/W				R	/W			
Bit	7	6	5	4	3	2	1	0		
Field	LED_S TAT	LED_CL R	Res	erved	MTP_CR C_STAT	MTP_C RC_CLR	DAC_CRC _STAT	DAC_CRC_CLR		
Default	0	0	0	0	0	0	0	0		
Туре		R/W		R/W	R/	W		R/W		
Bit		Name				Desc	ription			
15:14		Reserved		These bits are reserved.						
13		LED3_FAUI	_T	LED3 Status 0h = No Fault 1h = Fault Status is cleared with LED_STATUS bit						
12		LED2_FAUI	_T	LED2 Status 0h = No Fault 1h = Fault Status is cleared with LED_STATUS bit						
11	LED1_FAULT									
10		LED0_FAUI	_T	LED0 Stat 0h = No Fa 1h = Fault	us ault					

Table 17

9	OPEN_LED_STAT	LED Open Status 0h = No Fault 1h = Fault
		Status is cleared with LED_STATUS bit
8	INTERNAL	LED Internal Short Status 0h = No Fault
0	SHORT_LED_STAT	1h = Fault Status is cleared with INTERNAL SHORT bit
		LED open/internal short/short to GND fault status
7	LED_STAT	0h = No Fault
		1h = Fault
		LED open/internal short fault Clear Write '1' to both Status bit and
6	LED_CLR	Clear bit at the same time to clear the interrupt register status and
		the interrupt pin status.
5:4	Reserved	These bits are reserved.
		MTP CRC Status
3	MTP_CRC_STAT	0h = No Fault
		1h = Fault
		MTP CRC Clear
2	MTP_CRC_CLR	Write "1" to both Status bit and Clear bit at the same time to clear
		the interrupt register status and the interrupt pin status.
		DAC CRC Status
1	DAC_CRC_STAT	0h = No Fault
		1h = Fault
		DAC CRC Clear
0	DAC_CRC_CLR	Write "1" to both Status bit and Clear bit at the same time to clear
		the interrupt register status and the interrupt pin status.

INTERRUPT_STATUS_2 is shown in the above figure.

Table 18

Address:	0x58									
Bit	15	14	13	12	11	10	9	8		
Field	Reserved	Reserved	VINOCP_S TAT	VINOCP _CLR	Reserved		INT_PIN_ STAT	IINT_PIN_CL R		
Default	0	0	0	0	0	0	0	0		
Туре		R/W				R/V	V			
Bit	7	6	5	4	3	2	1	0		
Field	Reserved	Reserved	Rese	rved	VINOVP _STAT	VINOV P_CLR	VINUVP_ STAT	VINUVP_CLR		
Default	0	0	0	0	0	0	0	0		
Туре		R/W		R/W	R/W R/W			R/W		
Bit		Name		Description						
15:14		Reserved		These bits are reserved.						
13	V	INOCP_STA	Г	Voltage across RISENSE exceeds 220 mV. 0h = No Fault 1h = Fault						
12	V	/INOCP_CLR	VIN Overcurrent Fault Clear. Write "1" to both Status bit and Clear bit at the same time to clear the interrupt register status and the interrupt pin status.							
11:10		Reserved	These bits are reserved.							
9	IN	IT_PIN_STA	Г	INT PIN Fault Status 0h = No Fault 1h = Fault						

8	INT_PIN_CLR	INT PIN Fault Fault Clear. Write "1" to both Status bit and Clear bit at the same time to clear the interrupt register status and the interrupt pin status.
7:6	Reserved	These bits are reserved.
5:4	Reserved	These bits are reserved.
3	VINOVP_STAT	VIN voltage rises above 43V 0h = No Fault 1h = Fault
2	VINOVP_CLR	VIN Overvoltage Fault Clear. Write "1" to both Status bit and Clear bit at the same time to clear the interrupt register status and the interrupt pin status.
1	VINUVP_STAT	VIN Undervoltage Fault Status 0h = No Fault 1h = Fault
0	VINUVP_CLR	VIN Undervoltage Fault Clear. Write "1" to both Status bit and Clear bit at the same time to clear the interrupt register status and the interrupt pin status.

INTERRUPT_STATUS_3 is shown in the above figure.

			Tabl	e 19				
Address:	0x1C2							
Bit	15	14	13	12	11	10	9	8
Field	LED0_SHORT_DIS		Reserved			LED_C	urrent	
Default	0	0	0	0	1	1	1	1
Туре				R/W				
Bit	7	6	5	4	3	2	1	0
Field			l	ED_Current				
Default				FF				
Туре				R/W				
Bit	Na	me			D	escription		
15	LED0_SHORT_DIS			Short Fault Disable for LED0 0h = Short LED Faults are detected for LED0 output 1h = Short LED Faults are not detected for LED0 output				
14:12	Rese	Reserved These bits are reserved.						
11:0	LED_C	Current		LED Curre	nt control fo	or LED Outp	out.	

The LED_CURRENT[11:0] register can also be used to globally adjust 4 string's current down from this maximum value. The default value for all the LED_CURRENT[11:0] register is the maximum (4095).

			Tabl	e 20					
Address:	0x1C4								
Bit	15	14	13	12	11	10	9	8	
Field	LED1_SHORT_DIS				Reserved				
Default	0	0	0	0	0	0	0	0	
Туре				R/W					
Bit	7	6	5	4	3	2	1	0	
Field				Reserved					
Default				00					
Туре				R/W					
Bit	Na	me				Description			
15	LED1_SH	IORT_DIS		Short Fault Disable for LED1 Oh = Short LED Faults are detected for LED1 output 1h = Short LED Faults are not detected for LED1 output					
14:0	Rese	erved		These bits	s are reserv	ed.			

			Tabl	e 21				
Address:	0x1C6							
Bit	15	14	13	12	11	10	9	8
Field	LED2_SHORT_DIS				Reserved			
Default	0	0	0	0	0	0	0	0
Туре				R/W				
Bit	7	6	5	4	3	2	1	0
Field				Reserved				
Default				00				
Туре				R/W				
Bit	Na	ame				Descriptio	n	
15	LED2_Sł	LED2_SHORT_DIS LED2_SHORT_DIS Short Fault Disable for LED2 Oh = Short LED Faults are detected for LED2 1h = Short LED Faults are not detected for LED output						•
14:0	Res	erved			ts are resei	ved.		

			Tabl	e 22				
Address:	0x1C8							
Bit	15	14	13	12	11	10	9	8
Field	LED3_SHORT_DIS			R	eserved			
Default	0	0	0	0	0	0	0	0
Туре			·	R/W				
Bit	7	6	5	4	3	2	1	0
Field			·	Reserved				
Default				00				
Туре				R/W				
Bit	Na	ame			D	escription	1	
15	LED3_SH	LED3_SHORT_DIS LED3_SHORT_DIS Short Fault Disable for LED3 Oh = Short LED Faults are detected for LED3 o 1h = Short LED Faults are not detected for LED output						
14:0	Res	erved		These bits	are reserv	ed.		

Table 23

Address: 0	<28A									
Bit	15	14	13	12	11	10	9	8		
Field		Rese	rved	-	LI	ED_SHORT_T	HR	Reserved		
Default	0	0	0	0	1	0	0	0		
Туре				-	R/W	-				
Bit	7	6	5	4	3	2	1	0		
Field				Re	served	-				
Default					00					
Туре					R/W					
Bit		Name				Descriptio	n			
15:12		Reserved		These bits are reserved.						
11:9	LEC	D_SHORT_T	ΉR	Threshold for detecting Shorted LED Fault on LED output Fault is detected when LEDx pin voltage (referenced to ground) exceeds selected threshold when LED driver is enabled. 0h = 2.6V 1h = 3.0V 2h = 3.4V 3h = 3.8V 4h = 4.2V 5h = 4.8V 6h = 5.2V						
8:0		Reserved		7h = 6.0V These bits	are reserve	ed.				

A shorted LED fault is detected if one or more LED outputs are above the LED_SHORT_THR[11:9] setting.

				Table 24						
Address: 0x	2A4									
Bit	15	14	13	12	11	10	9	8		
Field		Reserved								
Default				C	00					
Туре					R					
Bit	7	6	5	4	3	2	1	0		
Field		Reserved			FSI	M_LIVE_ST	AT	•		
Default	0	0	0	0	0	0	0	0		
Туре					R			•		
Bit		Name			[Description				
15:5		Reserved		These bits a	re reserved.					
4:0		Reserved		$1h = LDO_S$ $2h = EEPRC$ $3h = STAND$ $4h - Ch = BC$ $Dh = NORM$ $Eh = DISCH$ $Fh = SHUTD$ $10h = FAUL$	DM_READ DBY DOST_STAR [®] IAL IARGE	Т	e.			

FSM_LIVE_STAT[4:0] can be read with the serial interface for debugging or to obtain additional device information.

				Table 25							
Address: 0x2A	6										
Bit	15	15 14 13 12 11 10 9									
Field				PWM_IN	PUT_STAT						
Default				(00						
Туре					R						
Bit	7	6	5	4	3	2	1	0			
Field			·	PWM_IN	PUT_STAT		·				
Default				(00						
Туре					R						
Bit		Name Description									
15:0	P۷	PWM_INPUT_STAT 16-bit value for detected duty cycle of PWM input signal.									

Table 25

PWM_INPUT_STAT[15:0] can be read to obtain the duty cycle of the PWM pin information.

RTQ4554-QT	
-------------------	--

			-	Table 26						
Address: 0x2A8										
Bit	15	15 14 13 12 11 10 9 3								
Field				LED_PW	M_STAT					
Default				0	0					
Туре		R								
Bit	7	6	5	4	3	2	1	0		
Field				LED_PW	M_STAT					
Default				0	0					
Туре				F	र					
Bit		Name				Description				
15:0	L	LED_PWM_STAT 16-bit PWM Duty Code that Brightness path is driving to LED0 output.								

LED_PWM_STATUS[15:0] can be read to obtain the duty cycle of the PWM output information.

				Table 27					
Address: 0x	2AA								
Bit	15	14	13	12	11	10	9	8	
Field		Rese	erved			ILED_	_STAT		
Default	0	0	0	0	0	0	0	0	
Туре					R	·			
Bit	7	6	5	4	3	2	1	0	
Field				ILED	_STAT	·			
Default					00				
Туре					R				
Bit		Name				Description	1		
15:12	Reserved These bits are reserved.								
11:0		ILED_STAT 12-bit Current DAC Code that Brightness path is driving to LED0 output.							

ILED_STAT[11:0] can be read to obtain the DAC code information for the output current.

				Table 28					
Address: 0	x2AC								
Bit	15	14	13	12	11	10	9	8	
Field			Reserved				BST_STAT		
Default	0	0 0 0 0 0 0 0 0							
Туре					२		•		
Bit	7	6	5	4	3	2	1	0	
Field				BST_	STAT		•		
Default				C	0				
Туре					२				
Bit		Name				Description			
15:12		Reserved		These bits a	are reserved.				
					Voltage Co	de that Adap	tive Voltage C	ontrol	
				Loop is					
11:0		BST STAT	-	sending to Analog Boost Block.					
		Boost Output Voltage =							
						+ (R_FB1 x 1	8.75nA x		
				VBOOST_S	STATUS)				

BST_STAT[10:0] can be read to obtain the Boost adaptive headroom DAC code information of the output voltage.

				Table 29						
Address: (x2AE									
Bit	15	14	13	12	11	10	9	8		
Field				Reserved				PWM_FREQ_SEL		
Default	0	0	0	0	0	0	0	0		
Туре					R/W					
Bit	7	6	5	4	3	2	1	0		
Field	PWM_FF	REQ_SEL	BS	ST_FREQ_SI	EL		LED_ST	RING_CFG		
Default	0	0	0	0	1	0	1	0		
Туре					R/W					
Bit		Name				Descr	iption			
15:9		Reserved		These bits a	are reserve	ed.				
8:6	PW	/M_FREQ_S	EL	PWM Frequency Setting based on I^2C Interface. 0h = 152Hz 1h = 305Hz 2h = 610 Hz 3h = 1.22kHz 4h = 2.44kHz 5h = 4.88kHz 6h = 9.77kHz 7h = 19.53kHz						
5:3	BS	ST_FREQ_SI	ΞL	Boost Frequ 0h = 303kH 1h = 400kH 2h = 606kH 3h = 800kH 4h = 1MHz 5h = 1.25 M 6h = 1.67M 7h = 2.2MH	z z z z IHz Hz	ng based	on I ² C Int	erface		

Table 29

RTQ4554-Q	Γ
-----------	---

8

0

WTP_EN

2:0	LED_STRING_CFG	Detected LED string configuration. 2h = 4 separate strings 3h = 3 separate strings 4h = 2 separate strings
-----	----------------	---

				Table 30			
Address	s: 0x2B0						
Bit	15	14	13	12	11	10	9
Field	BYP_BIS T	BYP_MTP_CRC	VIN_	UVLO	BST_GA	TE_DRV	PL_TSS
Default	1	1	0	0	1	1	0
Туре		R/W				R/W	1
Bit	7	6	5	4	3	2	1

		-	-	°	-	-	•	•	
Туре		R/W				R/W	/		
Bit	7	6	5	4	3	2	1	0	
Field	ILED	D_RISE_SR	ILED_F	FALL_SR	R Reserved		PWM_FSET _SEL	BST_FSET _SEL	
Default	0	0	0	0	0	0	1	1	
Туре		R/W	1	R/W	R/	W	R/	W	
Bit		Name				Descrip	tion		
15		BYP_BIST		BYPASS E 0h = Disab 1h = Enabl	le				
14		BYP_MTP_CRC		BYP_MTP 0h = Disab 1h = Enabl	le				
13:12		Vin UVLO control for Input voltage $0h = 2.8V$ VIN_UVLO $1h = 3.8V$ $2h = 5.3V$ $3h = 7.3V$							
11:10		BST_GATE_DRV		Boost GD drivers peak current, sourcing/sinking 0h = 0.24/0.36A 1h = 0.48/0.76A 2h = 0.84/1.26A 3h = 1.2/1.8A					
9		PL_TSS		Boost PL soft-start time: 0h = 25ms 1h = 50ms					
8		WTP_EN		WTP Function Oh = Disable 1h = Enable					
7:6		ILED_RISE_SR	LED driver rising slew rate.(10% <iled90%) 0h = 25ns 1h = 50ns 2h = 100ns 3h = 200ns</iled90%) 						
5:4		ILED_FALL_SR		LED driver falling slew rate.(10% <iled90%) 0h = 25ns 1h = 50ns 2h = 100ns 3h = 200ns</iled90%) 					
3:2		Reserved		These bits	are reserve	ed.			

Copyright © 2024 Richtek Technology Corporation. All rights reserved. RICHTEK is a registered trademark of Richtek Technology Corporation

RICHTEK

1	PWM_FSET_SEL	PWM_FSET Select: 0h = Default code setting. 1h = Follow MTP Set(0x2AE[8:6], this type is R/W)
0	BST_FSET_SEL	BST_FSET Select: 0h = Default code setting. 1h = Follow MTP Set(0x2AE[5:3], this type is R/W)

The VIN_UVLO[13:12] register can be used to adjust the VIN UVLO setting without adding feedback resistors.

The BST_GATE_DRV[11:10] feature provides the ability to adjust the driver strength of the MOSFET in a Boost converter circuit without the need for external components. This allows for fine-tuning of the switching performance of the MOSFET with respect to various parameters such as efficiency, radiated emissions, diode recovery inductive spikes, and dV/dt turn on, which can be critical in optimizing the performance of the Boost converter circuit.

ILED_RISE_SR[7:6] and ILED_FALL_SR[5:4] can be used to adjust the ILED current rising and falling slew rate without adding external components. Changing the LED slew rate can affect the response time and performance of the LED. The LED slew rate refers to the rate at which the LED output can transition from one voltage level to another.

Address: 0x2B2											
Bit	15	14	13	12	11	10	9	8			
Field	-	D_HR_TH	-								
			1								
Default	1	0	1	0	0	0	1	0			
Туре		R/W	_				R/W	-			
Bit	7	6	5	4	3	2	1	0			
Field	MRSS	S_SEL	MRSS	_FREQ	MRSS_F	RANGE	MOS_SEL	RANDOM_SEL			
Default	1	0	1	0	1	1	0	0			
Туре		R/W		R/W	R/	Ν		R/W			
Bit		Name				D	escription				
15:13	LE	D_HR_TH	R	$\begin{array}{l} 0h = 0.3\\ 1h = 0.4\\ 2h = 0.4\\ 3h = 0.5\\ 4h = 0.5\\ 5h = 0.6\\ 6h = 0.6\\ 7h = 0.7\end{array}$	5V 5V 5V 5V 5V 5V V		initial voltage				
12:10	LEI	D_HYS_TH	IR	MID headroom voltage and initial voltage setting. 0h = 0.05V 1h = 0.1V 2h = 0.15V 3h = 0.2V 4h = 0.25V 5h = 0.3V 6h = 0.4V 7h = 0.5V							
9	S	EQ_CTRL		Power s 0h = Kee	equence co ep in stand	by mode	oft-start mode				
8	LED_F	PWM_ISW_	_THR	Switch p				control when Hybrid			

Table 31

		0h = 12.5% 1h = 25%
7:6	MRSS_SEL	Boost spread spectrum function select: 0h = Random 1h = Triangular 2h = MRSS(Random+Triangular) 3h = MRSS(Random+Sawtooth)
5:4	MRSS_FREQ	Boost spread spectrum modulation frequency 0h = 11000 Hz 1h = 15000 Hz 2h = 20000 Hz 3h = 30000 Hz
3:2	MRSS_RANGE	OSC_BST spread spectrum range $0h = \pm 3.68\%$ $1h = \pm 4.6\%$ $2h = \pm 5.52\%$ $3h = \pm 7.13\%$
1	MOS_SEL	MOSFET_Select 0h:P-MOSFET 1h:N-MOSFET
0	RANDOM_SEL	Boost LX change cycle. 0h = Every 1 cycle to change Frequency. 1h = Every 8 cycle to change Frequency.

LED headroom is the voltage difference between the LED forward voltage and the LED driver output voltage. It is an important parameter that affects the performance and efficiency of an LED driver circuit. Different LED headroom values can provide various benefits, depending on the requirements of the application.

			Table 3	52							
Address:	0x2B4										
Bit	15	14	13	12	11	10	9	8			
Field	SYNC_SEL	SYNC_EN_SS	DAC_CRC_EN	DISCH	DISCH_SEL SHORT_FLT_CNT Rese						
Default	1	1	0	1	1	1	1	0			
Туре		R/W				R/W					
Bit	7	6	5	4	3	2	1	0			
Field		LE	D_FLTR_TIME_F	RISE			Res	erved			
Default	0	0	1	0	1	1	0	0			
Туре		R/W		R/W	ŀ	R/W	F	R/W			
Bit		Name				Description					
15		SYNC_SEL			ne functio	n _EN_SS bit					
14		SYNC_EN_S	5	0h: Disal	ion EN wl ble SS fur ble SS fun		SEL=1				
13		DAC_CRC_EI	N	DAC CRC enable 0h = Disable 1h = Enable							
12:11		DISCH_SEL		Discharg 0h = Disa 1h = 100		lect					

Table 32

		2h = 200ms 3h = 400ms
10:9	SHORT_FLT_CNT	SCounter that defines how many count a short condition must be continuous present to trip the LED short and LED string short fault 0h = 2 ms count 1h = 3 ms count 2h = 4 ms count 3h = 5 ms count
8	Reserved	These bits are reserved.
7:2	LED_FLTR_TIME_RISE	Selects the number of clocks the LEDx voltage comparators is filtered (rising edge) before they are used to detect LED/string faults and adjust the adaptive boost voltage. This filter time is for the rising edge of each individual string. Oh = 0 1h = 4 2h = 8 3h = 12 4h = 16 3Fh = 252
1:0	Reserved	These bits are reserved.

LED_SHORT_FLT_CNT[10:9] can offer the detection time from 2ms to 4ms to trigger the LED short fault. When a short fault happens, it needs to keep a period of time and then enters into the protection. Also, the LED strings operating at the low duty may lead to short protection by detecting the wrong statement. Therefore, the register 0x2B6h LED_SHORT_LOW_BRT_DIS[15:8] can set the brightness for LED short detect condition disable. If the brightness at the LED string is smaller than the setting, the short protection will not be triggered and latched. And its enable function is shown in the register 0x2B6h LED SHORT LOW BRT DIS[7]. When the 0x2B6h LED_SHORT_LOW_BRT_DIS[7] is set to '1', the function about "LED short detect condition disable" will be used according to the register 0x2B6h BRT_LED_SHORT_DIS[15:8].

The individual filter is conducted for each channel to filter the duration programmed by register 0x2B4h LED_FLTR_TIME_RISE[7:2]. The comparators about the detecting level are neglected in the period of filter time. Both of these filters start counting the duration from its own LED PWM rising edge they can be set from 0 to 252 clock cycles of 20MHz.

		Table	e 33						
Address:	0x2B6			. <u> </u>					
Bit	15	14	13	12	11	10	9	8	
Field		BRT_L	_ED_SHO	DRT_DIS	;				
Default			03						
Туре			R/W						
Bit	7	6	5	4	3	2	1	0	
Field	LED_SHORT_LOW_BRT_DIS	Reserved		LEC	_GLOB/	AL_FLTR_	TIME	•	
Default	0	0	0	0	0	1	0	0	
Туре	R/W	R/W			I	R/W		•	
Bit	Name					Descriptio	on		
15:8	BRT_LED_SHOR	BRT_LED_SHORT_DIS BRT_LED_SHORT_DIS BRT_LED_SHORT_DIS BRT_LED_SHORT_DIS To disable LED short condition "d					ness ≥ ition "dac	:	
7	LED_SHORT_LOW_	BRT_DIS		0, but headroom above HIGH" when BRT setting is less than 0x2B6[15:8] 0h: Disable LED short condition when BRT setting is less than {0x2B6[15:8]} 1h: Enable LED short condition when BRT setting is less than {0x2B6[15:8]}					
6	Reserved				oits are re		,		
5:0	LED_GLOBAL_FLT	R_TIME		filtering to selec	(rising au at the filte n individu	ber of cloc nd falling e r time of th al string.	dge). Thi	s is also	

Similarly, the global filter is conducted for every channels to filter the duration programmed by the register 0x2B6h LED_GLOBAL_FLTR_TIME[5:0]. It starts to count from the PWM rising and falling edges of any other LED channels except its own. The global filter is also able to be set from 0 to 252 clock cycles of 20MHz.

RICHTEK	
---------	--

				Table 34							
Address: 0>	(2B8										
Bit	15	14	13	12	11	10	9	8			
Field				Rese	erved						
Default				0	0						
Туре		R									
Bit	7	6	5	4	3	2	1	0			
Field		Rese	erved			READ_DE	VICE_INF				
Default	0	0	0	0	1	0	1	0			
Туре			र				२				
Bit		Name				Description					
15:4		Reserved		These bits are reserved.							
3:0	REA	D_DEVICE	INF	Read Devic	ce informatio	on					

READ_DEVICE_INF[3:0] can be read to obtain the RTQ4554-QT information(0A).

				Table 35					
Address:	0xFE								
Bit	15	14	13	12	11	10	9	8	
Field	MTP Programming			Reserv	ed			MTP Read	
Default	0	0	0	0	0	0	0	0	
Туре	R/W			R/W				R/W	
Bit	7	6	5	4	3	2	1	0	
Field				Reserve	d			-	
Default				00					
Туре				R/W					
Bit		Name			[Description			
15	MTP	Programmi	ng	0h = normal 1h = start M		nming sequ	ence		
14:9	F	Reserved		These bits a	are reserved	d.			
8	r	MTP Red $0h = I^{2}C \text{ read data from DAC}$ $1h = I^{2}C \text{ read data from MTP}$							
7:0	F	Reserved		These bits a	are reserved	d.			

The RTQ4554-QT has an MTP function for MTP programming and MTP Read. The MTP register stores the default settings. When power-on, the contents of the MTP register are transferred to the I²C register. Write and read can be made directly to control the I²C register without any changes to the MTP register. If the MTP default value must be changed, first write all desired data to the I²C register.

18 Outline Dimension

DETAIL A Pin #1 ID and Tie Bar Mark Options

Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A	0.700	0.800	0.028	0.031		
A1	0.000	0.050	0.000	0.002		
A3	0.175	0.250	0.007	0.010		
b	0.200	0.300	0.008	0.012		
D	3.900	4.100	0.154	0.161		
D2	2.650	2.750	0.104	0.108		
E	3.900	4.100	0.154	0.161		
E2	2.650	2.750	0.104	0.108		
е	0.500		0.0)20		
L	0.300	0.400	0.012	0.016		

W-Type 24SL QFN 4x4 Package

19 Footprint Information

Package	Number of			F	ootprint	Dimens	ion (mm	ı)			Toloropoo
	Pin	Р	Ax	Ay	Bx	Ву	С	D	Sx	Sy	Tolerance
V/W/U/XQFN4*4-24S	24	0.50	4.80	4.80	3.20	3.20	0.80	0.30	2.80	2.80	±0.05

Copyright © 2024 Richtek Technology Corporation. All rights reserved. **RICHTEK** is a registered trademark of Richtek Technology Corporation www.richtek.com

20 Packing Information

20.1 Tape and Reel Data

De la contra de la	Tape Size			Trailer	Leader	Reel Width (W2)		
Package Type	(W1) (mm)			per Reel	(mm)	(mm)	Min./Max. (mm)	
QFN/DFN 4x4	12	8	180	7	1,500	160	600	12.4/14.4

C, D, and K are determined by component size. The clearance between the components and the cavity is as follows: For 12mm carrier tape: 0.5mm maximum

Tape Size W1		Р		В		F		ØJ		Н
1400 0120	Max	Min	Max	Min	Max	Min	Max	Min	Max	Max
12mm	12.3mm	7.9mm	8.1mm	1.65mm	1.85mm	3.9mm	4.1mm	1.5mm	1.6mm	0.6mm

RICHTEK Copyright © 2024 Richtek Technology Corporation. All rights reserved. is a registered trademark of Richtek Technology Corporation

Tape and Reel Packing 20.2

Step	Photo/Description	Step	Photo/Description
1	Reel 7"	4	3 reels per inner box Box A
2		5	
	HIC & Desiccant (1 Unit) inside		12 inner boxes per outer box
3		6	
	Caution label is on backside of Al bag		Outer box Carton A

Container	R	eel	Вох			Carton			
Package	Size	Units	Item	Reels	Units	Item	Boxes	Unit	
		1,500	Box A	3	4,500	Carton A	12	54,000	
QFN/DFN 4x4		,	Box E	1	1,500	For Co	mbined or Partia	al Reel.	

20.3 Packing Material Anti-ESD Property

Surface Resistance	Aluminum Bag	Reel	Cover tape	Carrier tape	Tube	Protection Band
Ω/cm^2	10 ⁴ to 10 ¹¹					

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1st Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789

RICHTEK

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patients or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

RICHTEK is a registered trademark of Richtek Technology Corporation Copyright © 2024 Richtek Technology Corporation. All rights reserved.

21 Datasheet Revision History

Version	Date	Description	Item
00	2024/10/9	Final	